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ABSTRACT

f

-
Adaptive antennas provide an important means of enhancing signal-to-noise

:
y
E
:

ratio in the adverse electromagnetic environments that sometimes arise due to
jamming or interference. For that reason, adaptive antennas are increasingly
finding application in high performance radar and communications systems. In
many of these systems the adaptive subsystem must exhibit robust performance

in the face of multipath or rapidly changing interference.

Unfortunately, the adaptive beamformers now in use do not perform well in
certain environments. It has been known for some time that correlated-signal

conditions (e.g., due to multipath) can lead to partial or total cancellation of the

[

desired signal within ~n adaptive beamfofmet. .More recently it has been

recognized that signal cancellation can arise:during high-speed adaptation even

though 1) the desired signal and interfering signals are uncorrelated‘and 2) the
i

look-direction response is rigidly controlled.’ Thg initial sections o{ this report

examine the signal-cancellation mechanism, with einphasis on the mor:e difficult

uncorrelated-signal case. Simulation results are presented that illu;trate the

i N .
cancellation effect, and an analysis is given for a simple environment consisting of

the desired signal and one jammer. ~ - \

The remaining sections of the report describe a technique for avoiding signal
cancellation. The adaptation problem is reformulated to permit jammer nulling
and signal recovery under conditions that ordinarily result in signal cancellation.
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) The reformulated problem suggests a new adaptive structure comprised of a
o master beamformer in which adaptation is conducted in a synthetic, signal-free
o environment and a slaved beamformer in which the actual array-element signals

are processed. The new structure, which is termed a composite beamformer, is

4 A
[ S VL A

< compared to Frost’s hard-constrained adaptive beamformer. Particular attention

s’
-3

is given to relative performance in cancellation environments, to conditions under

which optimal behavior is approached, to convergence speed, and to weight

¢

3 A

;
'3,

behavior near convergence.
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L. INTRODUCTION

The past two decades have witnessed the emergence of the adaptive antenna
as an important element in countermeasures-resistant radar and communications
systems. The application that has inspired most of the development effort is
jammer nulling; adaptive antennas can eliminate a substantial fraction of the
incident jammer power while admitting some desired signal (or signals) with
useful gain. A key aspect of this selective treatment of jammers and desired
signals is that it is accomplished without extensive a priori knowledge of the
jammer environment. Instead, the locations of jammers are “learned” by some
adaptive algorithm, and nulls are automatically steered to and maintained on the

jammers.

One of the fundamental issues in adaptive antennas has been signal
preservation. It has been clear from the beginning that the nulling behavior
which is of such great value in eliminating jammers is a two-edged sword that
also threatens the desired signal. Proper control is absolutely essential to avoid
signal loss in the adaptive beamformer (ABF). The original sidelobe-canceller
scheme of Howells and Applebaum [1,2] exploited the differing signal-to-jammer
ratios in a directive primary antenna and an omnidirectional auxiliary antenna to
avoid seriously attenuating desired radar signals. Widrow (3], operating with
somewhat different signal and antenna assumptions, took the tack of introducing

pilot signals to control beamformer response in specified look directions. Griffiths

[4] devised a different soft-constraint technique that involved statistical
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characterization of the desired signal: rather than the actual surrogate signals

requﬁed by the pilot-signal scheme. Frost [5,6] developed a constrained least-
mean-square (LMS) algorithm that assured exact conformance with some
prespecified look-direction response. More recently, Griffiths and Jim [7,8]
contributed a structure called the ‘“generalized sidelobe canceller,” which
provided an alternative method of realizing hard constraints. Some further
development and generalization of soft-constraint methods has also taken place
within the past few years; Chestek [8] brought together much of the earlier work
on soft-constrained methods by combining soft linear constraints with a mean-

square-error criterion in his soft-constrained LMS algorithm.

A unifying factor in the work just outlined is the focus on the response of
the antenna to desired signals. This approach involves a tacit assumption that
the problem decomposes in a tractable way, i.e., that desired signals and jammers
can be treated independently. The assumption can be justified in many cases,
but, as will be demonstrated, there are some rather simple signal/jammer
scenarios where difficulty arises. When a failure occurs, the usual constraint
methods do not adequately protect the desired signal. Instead, the signal is
partially or totally destroyed in the adaptive beamformer by residual jammer

signals. This phenomenon is termed signal cancellation.

The remainder of this report is devoted to a further discussion of signal

cancellation and to the description of a method for avoiding it. The next chapter
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provides insight into the signal cancellation phenomenon by explaining how it
was recognized and by showing the effect in two sirmple cases. Chapter II
introduces a composite beamformer that defeats signal cancellation and
demonstrates the performance improvement that it provides. Chapter IV
elaborates upon the characteristics of the composite beamformer by describing
convergence behavior, illustrating performance under additional signal conditions,
and examining the issues of convergence rate and weight behavior near
convergence. Finally, Chapter V summarizes the status of the work on signal

cancellation and lists some topics that deserve further research.




; II. SIGNAL CANCELLATION IN HARD-CONSTRAINED
BEAMFORMERS

Jamming or interference generally involves the addition of spurious
components to the desired or target signal. These spurious components can
decrease intelligibility or cause decoding errors, sometimes to the extent of

denying communication or surveillance altogether. Adaptive antennas are useful
in suppressing the ‘“additive” jamming effect, but can be responsible for
introducing a “subtractive” jamming effect. Subtractive jamming amounts to the

cancellation of desired signal components and, like ordinary jamming, can disrupt

T T

communications. The purpose of this chapter is to provide insight into the

nature of this signal cancellation phenomenon.

The cancellation phenomenon will be examined in the context of adaptive
beamformers that use versions of the LMS algorithm. It will be seen, however,
that cancellation arises not from any special properties of the adaptation method,
but due to nonzero correlation between the signal and jamming waveforms
during the data window being considered by the adaptive algorithm. Similar

: cancellation effects will take place with any least-squares algorithm that might be

used to adjust the beamformer weights at a comparable rate.

The chapter has been divided into several sections. The first section

furnishes a br’ef historical perspective on signal cancellation. The second section

prov'’ s a seview of the properties of Frost’s hard-constrained algorithm and
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=5 establishes notation that will be useful throughout the report. The third section
N discusses the effects of signal cancellation on a wideband signal and illustrates :he
3N '
o
-‘;:3 destruction of signal components that can occur. The final two sections consider
f~
. cancellation in the narrowband case. Appendix A contains a supporting analysis
5‘_: for the final section.
7
N
2 A. Background
o
%
W It has been realized for some time that signal cancellation can occur even in
L
s hard-constrained beamformers when correlation exists between the desired signal
N
: and some other signal impinging upon the array. (See, for example, [6] by Frost.)
| - This was a disquieting fact, because this is precisely the condition that can arise
naturally as a result of multipath or can be induced artificially through repeater
jamming. It appears, however, that this troublesome case was more or less set
; aside’® while work continued on other aspects of adaptive antennas.
3
3 : As adaptive-antenna work went forward in other areas during the mid-
P y seventies, developments relevant to signal cancellation were taking place in
7,
.
'.::; another branch of adaptive systems. Experimental work in adaptive noise
s
- cancellation had disclosed filtering phenomena that fell outside the purview of
, :: Wiener filter theory. Glover [10,11,12] analyzed this non-Wiener behavior and
&
, .Some work directed speciically toward adaptive elimination of mulitipath interference at HF was described in
November 1081 by Hansen and Loughlin [19]). Their method makes use of a modulated pilot signal that is added to the
o communication signal at the transmitter. Pilot bandwidth must be adequate to provide discrimination between the vari-
. 4 ous modes arriving at the receiver. This approach is limited to those situations where the transmitter is accessible and
- baadwidth allocations are not restrictive.
2
'.
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showed that, for the case involving sinusoidal reference inputs, the adaptive noise
canceller can be regarded as a stable notch filter. Shensa [13,14] was later

successful in treating a somewhat more general class of input signals.

Widrow was able to extrapolate from the work being done on adaptive noise
cancellers and draw some disturbing new conclusions concerning signal
cancellation in adaptive beamformers. Widrow realized that correlation (in the
usual long-term sense) was a sufficient, but not necessary, condition for the
destructive effects of signal cancellation. If high adaptation speeds are employed,
signal cancellation can be induced by a broad class of jammer signals, and close
replication of the desired signal (e.g., through repeater jamming) is not
necessarily required. Since high adaptation rates are being sought so that good
jammer nulling perforniance can be obtained in dynamic countermeasures
environments, the conditions that support signal cancellation may be routinely
present. Reéognition of this state of affairs added considerable incentive to study
signal cancellation. Simulation work was begun at Stanford in 1980 to confirm
the effects predicted by Widrow and to support the search for methods of
avoiding signal cancellation. Portions of this work have been reported in
References 15 and 16. Other workers [17,18] have observed signal cancellation in

actual adaptive-antenna systems.

.......




B. Frost's Constrained LMS Algorithm

The application of his constrained LMS algorithm to adaptive arrays has
been described in some detail by Frost [5,6]. Some of the key results will be
restated in this section to provide the background and notation for discussions

that follow.

The adaptive array problem to be considered is pictured in Figure 1. A

uniform linear array of K elements is connected to an adaptive beamformer

that consists of K tapped-delay-line filters, each with J taps and J
adjustable weights. The sampled tap voltages and the weights are indexed in the

columnar scheme shown in the figure and are identified in vector notation as

XT(J) é [zl(j)’ 32(1.)’ ) zKl(j)] (2°l)

WI(i) A [wy(s), wals) v wrsi)l (2-2)

where j is the sample number. The filter outputs are summed to form the

beamformer output:

v(i) = WIGXG) = XT(HWG) - (2-3)

In addition to being the useful output signal from the system, the
beamformer output serves as the error signal that is fed back for use in the
weight adaptation process. The goal of adaptation is to minimize the output

contribution of noise sources (such as the jammer indicated in the figure), subject

o at e e e . e oo . . .
O T €y ey Wy Nt T et . .o . . . . . . L ) .- ..
. e e ety . . L N IR . o . . . . - N . R -
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to a set of constraints that provide rigid control over the array response in the

direction from which desired signals are expected.
It is assumed that the desired signal and the interference are uncorrelated.
The incident signal vector may be decomposed according to

X(j) = S(j) + N()) (2-4)

by letting S(j) represent the vector of desired signals at the beamformer taps
and N(j) represent the aggregate contribution of the various noise sources. If

the autocorrelations of the quantities of Eq. 2-4 are defined by

Rxx & E[X(j) XT(j)] (2-5)
Rgs A& E[S(j) ST(j)] (2-6)
Ryy & E[N(j) NT(5)] (2-7)

then the assumed lack of correlation between the desired signal and the noise is

expressed by
Rnr = Rss + RNN . (2-8)

This correlation condition must hold if the look-direction constraints are to afford

protection for the desired signal.

The constraint method depends upon knowing the arrival direction of the

desired signal. The array is assumed to be steered (either mechanically or

......
..........................
PR AR A A VR A R R A R A R A P D R,

------------------------
.............




electrically) toward the known look direction. Under this assumption, the desired
signal components are identical at the inputs to the beamformer filters and along
any column of taps in the beamformer. An equivalent look-direction processor
can therefore be formed by summing the weights in each beamformer column to
arrive at the J-tap filter shown at the top of Figure 1. The equivalent look-
direction filter provides the key to an algorithm that minimizes noise
contributions at the output without influencing the response to the desired signal.

Specifically, the weights may be freely adjusted to minimize the noise output

provided the column sums in the beamformer remain equal to the preselected
weights in the equivalent look-direction processor. In order to state the ' ’
minimization problem succinctly, it is helpful to express the look-direction
impulse response in vector form and to define a constraint matrix. The look-
direction-response vector is formed from the weights in the equivalent look-

direction filter:

1 :.é.: I!lv /2! seey ,J] . (2'9)

---------------
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The constraint matrix C is composed of columns of the form

0
} 1* group of K elements
0
0
} (7-1)"group of K clements
0
1
. } i group of K elements
G = (1)
} (¢4 1)®group of I elements
0
0
} J* group of K elcments
0
- (2-10)
That is,
c é [Cl, €Coy ety €5y ooy CJ] . (2’11)

The matrix C is a KJ X J matrix that conveys the beamformer structural

information needed to implement the constraints.

With the notation developed to this point, the constrained-LMS problem

may be stated:

..............
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Minimize E[y%(j)) = E[WTX(H)XT(j)W] = WTRyW (2-12)
subjectto CTW = ¢

Frost developed both closed-form and adaptive solutions for the
constrained-LMS problem. The method of Lagrange multipliers was used to

arrive at the optimal solution in terms of the signal statistics and the constraints:

w* = RgCICTRC] L . (2-13)-

This solution assumes that the signal statistics are known (or have been
estimated) and imposes a heavy computational burden if the matrix inversions

must be repeatedly performed to track a dynamic environment.

The adaptive algorithm generates an asymptotically optimal solution to the
constrained-LMS problem and requires much less computation per weight-update
cycle than the closed-form solution. The update scheme is most easily

understood from the individual weight recursions:

wi(j+1) = Wx(j)‘ﬂ!l(j)zl(f)‘% ‘f) {w;(5) - py()z:(5)) + ixl
fam]

) ) ) . 1 K ) N I

wg(i+1) = wK(J)—uv(J)zx(J)-; Y (wi(5) - py(5)z(5)) + 57
)

Wi+ 1) = Wy ild) - sy(idexs ) - R

5 ' : [2
Y () -m(mG) +
imK41




..................

K
woxl(i+1) = sz(j)-ﬂy(i)m(i)-% .El [w;(5) - my(5)z:(5) + !,72
) ) ) ~ 1 K ) . /s
wgi(i+1) = wgi(s) - py(5)zxi(s K Y  lw(s) - sy(i)z(5)] + K-
(J-DK+1
(2-14)

The right-hand side of each recursion involves the current weight value plus
several update terms. The first update term depends upon the current error and

the signal at the weight in question. The adaptation constant p is used to scale

this term; p is set® to yield stable system operation and to provide an
appropriate adaptation rate. The second update term is the average correction
over a column of weights, and the third update term is a fractional allocation of
the appropriate weight in the equivalent look-directional filter. Taken together,
the three update terms drive the weights toward the values that minimize output
power subject to the specified linear constraints. It is easy to verify the efficacy
of the constraint method by summing the updated weights over any column of

the beamformer and noting that the constraint is always satisfied.

The constrained-LMS algorithm may be written in matrix form to provide a
more compact description. It is helpful to introduce a KJ-dimensional initial

weight vector F, where

mn——

.Fmon governing the choice of 4 are discassed in References §, 6, azd 10.

................................................... . et AT
....... . et .
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F A ccTey'y |, (2-15)
and a KJ X KJ projection operator P, where
P AT -ccTeyleT | (2-186)
With this added notation, the constrained-LMS algorithm may be stated as:

w@o) = F
W(i+1) = P[W(j)-py(I)X()] + F . (2-17)

It will also be useful to note the time constants exhibited by the hard-
constrained algorithm. Frost showed that the matrix P RyyP determines the
rate of convergence of the mean weight vector toward the optimal weight vector
W*. Specifically, convergence of the mean weight vector along the i

eigenvector of P Ryy P occurs with a time constant given by

1 ~ 1
, o c——— —— y 2' 18
" In(1-po;) po; (318)

where o; is the eigenvalue associated with the §** eigenvector and where

updating at the sample rate (as opposed to, say, every tenth sample) is assumed.

C. Signal Cancellation in the Wideband Case

The effects of signal cancellation in a hard-constrained ABF can be readily

demonstrated by simulating® the simple adaptive-antenna problem diagrammed

in Figure 2. The selected adaptive antenna was a two-element Frost ABF with

® An overview of the simulation methods used in this research is given in Appendix E.
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two weights per element. A wideband desired signal S with power Pg equal to
one was incident from broadside, while a narrow-band jammer J with power P;
equal to 10 was incident from an angle of 30°. The ABF was constrained to
provide unity gain and a flat frequency response in the look direction by setting
the constraint-vector elements f; and f, to 1 and O, respectively. ABF weights
were updated using the constrained LMS algorithm, which in this particular case

may be written from (2-14) as
) 1 . NP | ) Ny It
w(j+1) = ry wi(7) - sy(5)zi(5)] - 3 [Wald) - wy(h)z()] + ry

wali+1) = L wa () - el - L twy () - motidein + 2L

L twy(d) - myidesil - L w i) - mytiredi + 2

4 1
wi()+1) 2

wli+ 1) = 1w (3) - myei - L toals) - mytidesti) + 22

(2-19)
In these equations g is the constant that controls the rate of adaptation; u was

set to 1 X 1072 in this simulation.

Figure 3 shows some measurements made after a sufficient number of
adaptations to allow transient phenomena to die away. Part a) of the figure
shows the antenna pattern at the jammer frequency of 0.25 f samp 20d confirms
that a null has been placed on the jammer. Part b) is a plot of the frequency
response in the jammer direction; this plot also shows a deep null at the jammer
frequency. The third plot simply confirms that the specified response in the look

direction has been attained. Taken-together, the three plots seem to indicate

...............
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that all is well and that the intended objectives of signal recovery and jammer

rejection have been attained.

The favorable picture provided by the antenna plots of Figure 3 darkens
considerably when the desired signal and the ABF output are compared. Figure
4 is a plot of ensemble-averaged spectra of the desired signal, the jammer signal,
and the ABF output. It is clear that, despite very rigid control of the look-
direction response and good jammer rejection, the desired signal has not been
recovered intact. Instead the signal has experienced frequency-dependent
distortion. Signal components on the skirts of the signal remain unaffected, but
components in the vicinity of the jammer frequency have been totally or partially

destroyed in the ABF.

The extent of signal cancellation for a given antenna structure and signal
environment is governed by the rate of adaptation, i.e., by the adaptation
parameter p. The simulation just described was repeated for several different
values of u; output spectra for the series of experiments are assembled in Figure
5. Parts a and b of the figure involve lower adaptation rates than the rate used
to produce the results in Figure 4 and reveal lesser amounts of signal destruction.
In fact, cancellation is almost undetectable in Part a. Part ¢ repeats the results
shown in Figure 4. Part d involves a large 4 (a value near the instability point)
and shows the near-total signal destruction that can occur in an extreme case. It
is apparent from Figure 5 that cancellation occurs over a considerable range of

adaptation parameter selections and that the destructive effects can be quite

..........
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important when high adaptation rates are sought. It is also clear that, although
cancellation effects may be made negligible by choosing a sufficiently small g,
orders of magnitude in convergence rate must be sacrificed to maintain signal
quality. At these low adaptation rates the ability to track a dynamic

environment will be greatly reduced.

D. Signal Cancellation in the Narrowband Case

A wideband signal was useful in the examples of the previous section
because the broad spectrum clearly showed the extent of cancellation effects.
This section will concentrate on developing a more detailed picture of the
cancellation phenomenon by considering the internal operation of 2 beamformer
while cancellation is occurring. A narrowband signal as well a5 a narrowband

jammer will be used to facilitate the analysis of beamformer behavior.

A particularly simple beamformer structure and signal/jammer scenario were
sought to provide a test case for the study of cancellation effects in the Frost
ABF. The selected problem is illustrated in Figure 6, which shows a sinusoidal
desired signal S (frequency fg = 0.25) incident on a two-element array from
broadside and a sinusoidal jammer J (frequency f; = 0.26) incident from 45°.
Element spacing was a half wavelength at the signal frequency. The antenna
elements were tied to a four-weight Frost ABF that was steered to broadside and

constrained to provide unit gain and flat frequency response in the look direction.

(The constraints were f; =1 and [, = 0, as indicated in the equivalent look-
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direction filter.) The weights were updated using the constrained LMS algorithm
given in Equations (2-19).

Just enough degrees of freedom were provided in this test case to allow the
objectives of signal reception and jammer rejection to be realized. Constant gain

in the signal direction was assured by the hard constraints of the Frost

algorithm:

I
[

(2-20)

|
=

w1+ Wo =
W3+ W, =

The constraints consumed two of the four available degrees of freedom; the

remaining two degrees of freedom were adequate for eliminating the jammer.

The requirements for eliminating jammer energy can be readily derived for

the simple case at hand. The array output attributable to the jammer is given
by
yi(t) = e/“w—jwyl + 7wy jw] (2-21)

where ¢,, is the element-to-element phase shift for the jammer signal. The
element-to-element phase shift may be computed from the array geometry and

the signal and jammer parameters:

As | . s | .
2% T sin 45° 2r T sin 45°
Pee = = = 231 radians . (2-22)
Y} N .25]
s\
.26

Inserting the value for .., expanding, and equating real and imaginary parts to
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zero yields
w,;-.6739wy-.7388w, = 0
_ . (2-23)
- 7388 W2 —W3 + .6739 w‘ =0
The equations 2-20 arising from the constraints and the equations just given
may be solved simultaneously to arrive at the ideal weight values for signal

reception and jammer nulling. The desired weights are:

[ w, = 050

Wz = 0.50

wy = 022 - (2-24)
| wo = o022

These are the Wiener weight values that will be approached as the
adaptation constant p is decreased to small values and adaptation proceeds very
slowly. Ideal beamformer operation (i.e., perfect signal reception and jammer
nulling) is obtained with these weights. In practice, however, dynamic signal
environments may make high adaptation speeds necessary, and weight values
may be far from the Wiener ideal. It is of interest to examine weight behavior

under these more demanding circumstances.

Figure 7 shows the weight dynamics over a period of 256 adaptation cycles
for the test case outlined above and g = 0.1. The epoch shown is after initial
transients have died away; the non-Wiener behavior exhibited here will continue
indefinitely. Each weight can be seen to oscillate about the desired Wiener
weights; i.e., the average values of the weights are the Wiener weights. The

oscillation frequency of 0.01 f,,,,, is the difference frequency between the desired
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5; signal at 0.25 f,,,, and the jammer signal at 0.26 f,,,,. This is the same ‘

weight behavior noted by Glover [11,12] in a related noise-cancelling problem.

Figure 8 documents the behavior of the weights when the simulation
experiment is altered by abruptly switching off the signal at the time indécated.
The oscillatory behavior of the weights ceases, and, after a brief transient period,
the weights reach and hold the optimal values that were calculated earlier. It
thus appears that signal energy is needed to support the non-Wiener behavior
that has been observed. The precise role of the signal in the adaptive system
may be better understood by examining the interactions of the desired and

jammer signals and the dynamic weights.

From Figure 7 it is clear that during signal presence each of the weights is of

the form
w, = C.- + A" cin(wAt + ¢.) ’ (2-25) l

where C; is a constant giving the mean weight value, wy = (27)(0.01 f,,,,,) is
the radian difference frequency, and A; and ¢; are constants expressing the
amplitude and phase of the sinusoidal component of the weight. Arbitrarily
selecting w, as the phase reference and measuring the remaining constants yields

the following expressions for the weights:

-----
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( w, = 050 + 0.46  sin (wal-¢,)
wy = 0.50 + 0.46 sin (wpt-¢,-7)
wy = 022 + 046 sin (wpt-¢,-7/2) (2-26)

| Ve = 0.22 + 0.46  sin (wpt-¢,-37/2)

Note that the oscillations of weights w; and w, are 180° out of phase so that the
hard constraint for these two weights is always satisfied. Similarly, weights w

and w, are antiphased and satisfy the constraint at all times.

For purposes of analysis the beamformer of Figure 6 may be redrawn to
reflect the observed nature of the weight behavior. Figure 9 shows a revised
structure in which each weight has been replaced by the parallel combination of a
fixed gain and a mixer. The fixed gains are set to the Wiener weights as required
by the observed average values of the weights. The mixers have introduced into
them a set of sinusoidal voltages with radian frequency equal to w,, as required
by the observations regarding the oscillatory component of the weights. The
relative phases of the mixer input voltages are shown in the phasor diagram inset

into the upper right of the figure.

It is evident from Figure 9 that the oscillatory behavior of the weights
creates a considerably more complicated signal set in the adaptive beamformer
than would be the case with constant weights. The fixed gain associated with
each weight contributes one component at the signal frequency and a second

component at the jammer frequency. The mixer, however, yields sum and

difference components for both the signal and the jammer. The net contribution
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from each weight is six components at four different frequencies; the signal set
entering the final summing junction in Figure 9 consists of 24 different
components. A detailed examination of these components is necessary to

understand signal cancellation in even this simple case.

Fortunately, the apparent complexity of the 24-signal set is greater than its
actual complexity. First, it should be recalled that the Wiener weights are
known in this case to provide perfect signal reception and perfect jammer nulling.
It follows that the eight components attributable to the fixed gains combine to
simply yield a single component equal to the desired signal as seen at either array
element. Second, it should be noted that in both beamformer columns (i.e. at
weights w, and w, and at weights w3 and w,) the desired signal is cophased
while the weights are antiphased. All eight terms arising from mixer action on
the desired signal therefore sum to zero in the output summing junction. It
should be noted that components generated from the desired signal by weight
dynamics will always cancel in a properly steered Frost ABF due to the phase

relationships enforced by array steering and the hard constraints.

At this point the only components that have not been examined are those

generated by mixer action on the jammer signals. The output signal may be

written as




y(t) = cos wgt
+ [cos wyt][A sin(wpt - ¢g)]
+ leos(wyt - g, )] [A sin(wat - do - 7)
+ [sin wyt] [A sin(wat - ¢p - 7/2))
+ [sin(wyst - ¢,.)] [A sin{wpt - @ - 37/2)] (2-27)

where A is the amplitude of the weight oscillations. Expanding the products of

signals and weights yields

y(t) = cos wgt

+ 2 sinl(wg + w))t - g0l + L sin(-ws)t - 4o

+ % SiD[(O)A + Ul)t - ¢° -~ P ~ ﬂ] + —g' Sin[(ﬂs)t ~¢o+ e - 7r]

- =sinf(wy + wy)t - @] + %’ sin[(-ws)t - @)

bwb

- ? sin[(wA + Wl)t - ¢o - ¢“ - W] + % Sin[(—wS)t - ¢0 + ¢cc - 7l']

(2-28)

Further simplifications are obvious at this point. Cancellation eliminates all
the terms at the radian frequency (wa + w;). Additionally, terms at —wg can be

combined and then reexpressed using the relationship

sin(~-0) = -sin(0) . (2-29)
These steps plus inserting the measured value of A yield
y(¢) = 1.0 cos wgt - 0.46 sin(wgt+ ¢,) - 0.46 sin(wst+ ¢,~d..+7) . (2-30)

The above expression for y(¢) indicates the interesting nature of the

beamformer output in the case at hand. Weight dynamics have generated a
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number of components at various frequencies, but weight phases are such that all
components except those at the signal frequency sum to zero within the
beamformer. The net result of the weight dynamics is a pair of synthesized
components at the signal frequency that, when added to the actual signal, serve

to drive the beamformer output power below the desired level.

Figure 10 is a phasor diagram that shows the three output signal
components and their sum. The output signal amplitude is 0.64, not 1.00 as
desired; output power is approximately 3.9 dB below the desired level. The
signal has been partially cancelled by non-Wiener behavior in the weights even
though the Frost constraint is perfectly sustained in the look direction. Faster

adaptation would cause even more signal loss.

E. An Equivalent Adaptive-Noise-Cancelling Problem

The problem set forth in Figure 6 can be treated as an adaptive-noise-

cancelling problem if it is imagined that the desired and jammer signals are

available separately. The equivalent problem structure is illustrated in Figure 11.

¥
\' The desired signal may be taken straight through to the summing junction since
ﬁ the hard constraints specify unity gain and a flat frequency response. The
- .
:‘I jamming signal is brought to the summing junction through an adaptive filter
l" ’

that emulates the jammer-direction gain of the Frost beamformer. An in-phase
gain G; and a quadrature gain Gy are able in this special case to give complete

. control over both the amplitude and phase of the jammer contribution.
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Expressions relating G; and Gg to the ABF weights w,, w,, w3, and w,
are needed to complete the specification of the equivalent problem. The required

expressions may be derived from the equation for the jammer output from the

ABF:

y;(t) = wycosw;t + wycos(wyt-¢,,) + wysin wyt + w,sin(wyt-¢,,)

E (2-31)

}‘ where ¢,, is the element-to-element phase delay for the jammer signal. After
~
. making use of trigonometric identities and regrouping terms, the equation
\ becomes
ys(t) = [wy+ (cos g )wo(sin @)W ] cos wyt

+ |[(sin ¢, )ws + w3 + (cos ¢, )W, sin wyt . (2-32)
y Comparison of this equation with the structure of Figure 11 yields the
<
' relationships
: Gp = ~[wy + (cos g, Jwz ~(sin ¢, Jw ] (2-33)
.
2 Go = -l(sing.)we + w3+ (cos 4, )w ]
The equivalent system involving G; and Gy allows a considerably simpler
by
: characterization of the weight dynamics associated with signal cancellation than
2 would have been possible in the four-dimensional weight space of the original
: problem. In particular, the reduced dimensionality simplifies comparisons of the
d

dynamic solution obtained during cancellation with the Wiener solution that is

approached at low adaptation rates.
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The Wiener solution in terms of G; and Gy may be determined by

inspection for the ANC structure:

0
0 - (2-34)

Thus it is seen that, in the two-space defined by plotting G; along the z axis and
Ggq along the y axis, the origin represents the solution that gives perfect signal

recovery and perfect jammer rejection.

Figure 12 is a plot that shows the loci of several dynamic solutions in the
G; - Gg plane. Each solution is obtained by repeating the narrowband
simulation of the previous section for the indicated value of 4 and computing G,
and Gg from the weights {w;}. At p=001, the solution locus is a tiny circle
that blurs into a dot at the origin, i.e., the solution almost exactly duplicates the
Wiener solution. Signal cancellation is negligible in this case. As p is increased,
the solution loci expand to form circles * about the origin, and the amount of
signal cancellation is increased. Cancellation exceeds 90 percent at the point

where stability considerations forbid further increases in p.

It is worthwhile to note the range of u over which departure from the
Wiener solution is visible in Figure 12. At p = 0.001 the deviation from the

Wiener solution is barely perceptible. Instability does not occur until s reaches

*Some departare from s circular locus is evident for # == 0.1. The effect is due to second-order weight oscilla-
tions at the sum frequency, i, at fg + [, Glover reported similar effects in [11].
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beyond 1.00 (approximately 1.15). This gives a useful range of g of about three
orders of magnitude over which departure from the Wiener solution is noticeable.
This is a rather broad operating region that includes the values of p for which |
convergence is most rapid. In many cases it will be very unattractive to sacrifice
orders of magnitude in convergence rate in order to obtain a close approximation
to the Wiener solution. This is, unfortunately, the nature of the tradeoff that

must be addressed when conventional adaptive beamformers are applied.

The loci of Figure 12 have several interesting interpretations. Considered
simply as the path traced by the tip of a gain vector, each locus demonstrates the
same cyclic weight behavior that was shown earlier in Figure 7. The number of
samples required to complete one circuit of a locus is 100; this is the period of the
difference frequency between the signal frequency of 0.25 f,,,,, and the jammer

frequency of 0.26 f

samp*

The radius of each locus may be interpreted as a measure of the peak short-
term correlation between the desired signal and the jammer. The time window
over which the short-term correlation is computed is governed by the parameter
p: large values of p lead to rapid adaptation and, consequently, narrow time
windows. Peak correlation between the desired signal and the jamming signal
can be quite high if only a narrow time window is considered. The peak short-
term correlation for p = 1.0, for example, is almost unity. The weight dynamics
serve to create a modified jamming signal in which this short-term correlation is

maintained near its peak value. Appendix A considers the dynamie solution from
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the viewpoint of short-term correlations and develops a closed-form description of

weight behavior when both signal and jammer are sinusoidal.

Another way to view the loci of Figure 12 is to treat them as traces of the
minima of dynamic error surfaces. It is well known that, in the stationary case,
the Wiener solution defines the minimum of a quadratic error surface. In the
case at hand, the error surface may be treated as static only at small values of pu.
The minimum of the surface in the stationary case is not at zero error, but is
elevated above zero by the power level of the desired signal. At low values of p
the Wiener solution is closely approximated, and the desired signal is delivered
essentially without loss at the beamformer output. As p is increased, the error
surface must be treated as dynamic. The minimum of the error surface no longer
coincides with the Wiener solution. Instead, for the simple case under
consideration, the minimum lies on a circle centered on the Wiener solution.
Furthermore, the dynamic minimum does not lie at the same error level as the
Wiener solution. The elevation of the minimum is decreased by the amount of
signal cancellation attainable at a given value of u. The decrease, expressed as a
fraction of the desired signal power, is related to the quantity termed

misadjustment [3]

T _ a ElA)N - Elly*(0)) ]
misadjustment M@p) & Ely ()] , (2-35)

where y°(t) is the output with the optimal weight vector W*. Because E[y%(t)]

is less than E[(y‘(t))’], misadjustment is a negative quantity in the region of
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interest. It is, however, the magnitude of misadjustment that is important, not
the sign. The contours of Figure 12 have been labelled to show |M(u)| levels as

well as g values.

The discussion of the error surface that has just been given differs somewhat
from earlier treatments. For a given ABF structure, the error surface has
previously been considered simply as a function of the input signals; changes in
the error surface were attributable to changes in the input signal description.
Here the error surface has been described as a function of the adaptation
parameter. In other words, the error surface must be described in terms of the
signal environment percesved by the beamformer, not simply in terms of some

detached statistical characterization of the incident signals.

The view of the solution set that has just been given indicates the nature of
the problem at hand. There is a direct coupling between the adaptation
parameter that is chosen and the solution that is delivered by the ABF. Low
values of the adaptation parameter p yield a solution that conforms closely to the
Wiener solution and satisfies the requirement for signal preservation. These
values of p fail, however, to meet the requirements of responding rapidly and
tracking a dynamic signal environment. Higher values of p provide better
tracking of changes in the environment, but the non-Wiener solutions involve
sacrifices in the quality of the recovered signal. Given the beamformer under

consideration, nothing can be done beyond striking the best compromise between

signa! gquality and tracking capability. A change in the nature of the beamformer
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is needed to break away from the limitations imposed by the coupling between

the adaptation parameter and the solution generated by the ABF.
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. A COMPOSITE BEAMFORMER THAT ELIMINATES SIGNAL

CANCELLATION

Chapter 2 has illustrated the signal cancellation effects that can arise in
relatively simple signal/jammer scenarios and has demonstrated that even the
most rigid constraints can fail to preserve the desired signal. This chapter turns
from a discussion of the problem to the description of a solution and shows how
signal cancellation can be avoided at the price of some increase in beamformer
complexity.

Chapter 3 consists of three sections. The first section builds upon the
background provided by Chapter 2 and reformulates the adaptive beamformer
problem in such a way that jammer nulling can be accomplished at high
adaptation rates without signal cancellation. The beamformer structure that
arises out of the reformulation is termed a composite beamformer or CBF. The
next section discusses the key issue of signal relationships within the new
beamformer. A demonstration of the performance improvement afforded by the
new beamformer is given in the third section by revisiting the wideband problem

from Chapter 2.

A. Problem Reformulation

Chapter 2 and Appendix A described the differing solutions derived by a

hard-constrained beamformer at various adaptation rates. The solutions differ
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because, from the beamformer viewpoint, the problem changes. Unfortunately,
the viewpoints of the beamformer and the system designer begin to clash as
signal cancellation becomes significant. The designer is not interested in the
minimization of output power at all costs, and will typically invoke constraints in
an attempt to restrict the minimization process. The beamformer, however, is
designed to relentlessly pursue minimization. At high adaptation rates the
beamformer weights possess the mobility to exploit short-term correlations
between signal and jammers and thereby circumvent the constraints. Design
objectives are simultaneously bypassed, and system performance is
unsatisfactory. A problem reformulation is needed that harmonizes design
objectives with the realities of beamformer behavior at high adaptation rates; this

section pursues that reformulation.

Two observations can be made at this point that are useful in developing a
problem reformulation. One observation is that interaction between the desired
signal and the jammer is the root of the cancellation phenomenon. The nature of
this interaction was demonstrated in some detail in Chapter 2 for the case
involving a signal and a jammer that are narrowband. It was shown
experimentally and analytically that the presence of both signal and jammer
energy is a prerequisite for signal cancellation. In particular, it was shown that
the output signal is the ‘‘target” of the cancellation process and that short-term
correlation between signal and jammer waveforms is the phenomenon that makes

cancellation possible.

..............................
..................................
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A second observation that can be made is that the signal plays no role in the

Wiener-solution calculation in a perfectly steered Frost ABF. In other words, it

is completely equivalent to write
W* = RNCICT Rjy C) L (31)

rather than the earlier statement
W* = RCICT R ClL (2-13)

where Ryy = Rgs + Ryy as originally assumed. This point can be appreciated
intuitively from the fact that the look-direction response is determined
exclusively by the hard constraints, not by the desired signal. The equivalence of
(3-1) and (2-13) may be rigorously demonstrated by substituting for Ryy in (2-

13) and simplifying. An appropriate substitution is
RH = RSS + RNN = cT RRRC + RNN (3-2)

where Rpp is the autocorrelation matrix for the vector of signal voltages
appearing at the taps of any one of the beamformer filters. Appendix B traces
the somewhat lengthy proof of the equivalence for both a narrowband processor
using a single complex weight per beamformer channel and a wideband processor
using tapped-delay-line filters for each beamformer channel. Yet another way to
explore the role of the signal is to consider the problem in the context of an
ednivalent generalized sidelobe canceller; Appendix C discusses this approach to

the problem.

.........
................
............

c e Coe el ey v e o
T LI v _ (e - . - « - - . . . - . . - e . o S . - . « e,
NCVX ORI e LI A I -f‘..'n,'-.u- IR TS VAL WL PN S S Sl . AR PRSI S DAL Sl S SN P SN S +




- 45 -

Reconsideration of the adaptive beamformer problem has thus far indicated
1) that the signal drives the process of signal cancellation that results in its own
demise and 2) that the signal has no role in the determination of a set of weights
that optimizes array performance. These two points argue for exclusion of the
desired signal from the beamformer. The overlooked consideration is, of course,
that the original objective was to recover the signal. The remaining step is to
harmonize the objectives of cancellation-free adaptation and successful signal
reception by devising a structure that excludes the signal from the adaptive
process but allows the signal to pass through to the system output. The problem
reformulation thus amounts to more precisely defining the role of the desired

signal in an adaptive array.

Figure 13 illustrates a beamformer based upon the problem reformulation.

The array has been augmented so that subarrays consisting of multiple elements

appear in place of the individual elements of the original array. A preprocessor
operates upon the received signals from the augmented array to generate an !
environment that is free of desired-signal content. A Frost ABF operates in this
synthetic environment and derives weights that are copied to a slaved
beamformer. The slaved beamformer has the same signal-path structure as the
adaptive beamformer, but is connected directly to selected antenna elements.*

Desired-signal components are present in the slaved beamformer, and a useful

1t is also possible to connect the slaved beamformer to the subarrays through a preprucessor that makes use of
maltiple elements of each subarray. The pattern response of the element combination generated by this second preproces-
sor mast bave nonsero response in the look direction.
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% output may be drawn from it.

Taken as a whole, the structure shown in Figure 13 is termed a composite
oy )
S beamformer (CBF). The key elements are 1) an augmented array, 2) a
\& .

preprocessor that excludes the desired signal from the adaptive process, 3) an
adaptive beamformer that can be constrained to control look-direction response

while nulling jamming signals, and 4) a slaved beamformer that is used to

' implement the computed solution and recover the desired signal. Three of these

. elements, the array, the preprocessor and the adaptive beamformer, afford

3_ considerable flexibility in that a variety of specific realizations are possible; the

, : slaved beamformer design is inflexible in the sense that it mirrors the adaptive

¥ beamformer design. Appendix D describes an alternative CBF realization based

’; upon Widrow’s pilot-signal algorithm; other realizations may also be derived.

';‘ : B. Signal Relationships in the CBF Master and Slave |
Because CBF operation involves the derivation of weights in the master j‘
beamformer for application in the slave, it is essential that the signal sets in the |
; two beamformers be closely related. Ideally, the iwo signal sets would be |

identical, save for the absence of look-direction components in the master. This
would assure that weights derived in the master were equally appropriate for and

effective in the slave. Unfortunately, it is not possible, in general, to attain the

be allowed. This section begins a discussion of the nature of the compromises

y
J
-
-
X ideal signal relationships between the two beamformers, and compromises must
N
%
™
L 4
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that are necessary and of the consequences of those compromises.

The basic difficulty in attaining the ideal signal sets lies in removing the
look-direction signal from the master beamformer without perturbing the various
noise signals. If an omnidirectional element is used for the slaved beamformer,
then the perfect subarray/preprocessor combination serving the master must
have the pattern response shown in Figure 14(a). The omnidirectional pattern is
perfectly replicated, except for an infinitely deep, vanishingly narrow notch in
precisely the look direction. Obviously, a pattern of this nature can neither be
realized nor successfully applied; some modification of interference signals
arriving near the look direction must be accepted if the desired signal is to be

excluded based upon directional information.

A simple means of realizing a look-direction null is to use a two-element
subarray, apply any necessary steering delays to cophase the desired signal, and
difference the element signals. Figure 14(b) gives the response of such a subarray
at the frequency for which the elements are separated by one-half wavelength.

The null is steered to broadside in this instance.

The response of the two-element subarray departs significantly from the
ideal response. At + 90°, the two-element subarray exhibits 6 dB of gain over
isnt-opic; 0 dB is at about + 20°; gains within & 10° of the look direction fall
seriously below 0 dB. The two-element pattern does, however, exhibit the key
features of a deep, wideband null in the look direction and reasonable gains at

angles removed from the look direction. These features plus the great simplicity
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of the subarray/preprocessor make the two-element subarray worthy of more

detailed consideration.

The general CBF structure of Figure 13 may be specialized to yield the CBF
shown in Figure 15. Here the desired signal is assumed to be incident from
broadside so beam steering may be neglected. The preprocessor is realized by
using two-element subarrays in a simple element-differencing scheme. The
sharing of elements between subarrays provides very efficient use of elements;
only a single element is needed beyond those ordinarily required for a comparable

array.’

A Frost ABF operat& upon the preprocessor output to derive a set of
weights that minimizes error power subject to a set of look-direct constraints. It
should be noted that, in contrast to conventional adaptive beamformers, the error
power is distinct from the CBF output signal power. Error power can be driven
to zero without endangering the desired signal component in the output. This is,

in fact, the ideal state of affairs.

Because weights derived in the Frost ABF will be applied in the slaved
beamformer, it is vital that relative signal phases match in the two beamformers.
The uniform structure that exists in the preprocessor assures that this phase
matching will be obtained. The set of two-element subarrays feeding the Frost

ABF echoes the structure of the array of omnidirectional elements serving the

] . . N
Element sharing among subarrays does introduce thermal-noise correlations in the master beamformer that are
aot preseat in the slave. Genenlly, however, thermal noise powers will be relatively low, and these spurious correlations
will pot seriously affect performaace.

...................................

.......................
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slaved beamformer.

Phase relationships between signals in the ABF and the slaved beamformers
are made clearer in Figure 16. The jammer components received by the
omnidirectional elements are indicated by a set of equal-amplitude, uniformly
spaced phasors Jy, Jy, Jy, ..., Jk.1, Jk- The preprocessor operates upon these
inputs to produce the phasor outputs Jy-J,, Jo-J, ..., and Jx_;-Jk. These
phasors are also equal in amplitude and have the same phase-angle separations as
the received jammer components. The preservation of relative phase in the
preprocessor assures that weights that generate a null in the ABF will also

generate a null in the slaved beamformer.

The phasor argument as advanced in Figure 16 applies to a single jammer at
a single frequency. Linearity and superposition apply, however, and show that
phase relationships are preserved for multiple jammers and for broadband as well

as narrowband signals.

The uniform linear array provides an attractive structure for the CBF
because there is the option of element sharing between subarrays. A regular
array structure is not, however, a prerequisite for the CBF. The fundamental
requirement is for phase matching between the master and slave beamformers.
Phase matching may be obtained for an arbitrary array geometry by augmenting
each original element to form identical subarrays at the element locations.

Identical preprocessors may then be used to form subarray responses with nulls in

the selected look direction. The preprocessor outputs must be cophased for the
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& look direction and applied to the adaptive beamformer while the original element

outputs are cophased and applied to the slave.

5

| C. CBF Performance — An Example

- The CBF described in the previous section is capable of delivering much
better performance at high adaptation speeds than, say, a comparable Frost

: E ABF. The performance contrast may be conveniently illustrated by returning to

\;: the wideband problem of Chapter 2 for which the Frost ABF performance has

, already been demonstrated.

:f Figure 17 diagrams the wideband problem with a Frost-based CBF replacing

- the original Frost ABF. The signal and jammer descriptions are identical, as are

: ?::,3 the look-direction constraints. A third antenna element has been added in order

\- : to provide appropriate inputs for the subtractive preprocessor. Two of the

f j:; elements also serve the slaved beamformer, which makes use of weights from and

;'»’:4, functions in parallel with the adaptive beamformer.

s The antenna pattern at the jammer frequency of 0.25 f,,p,, is shown in Part

e

;Z"; a) of Figure 18. This plot was generated after initial transients had died away

v

and jammer nulling was essentially complete. A d'eep notch exists at the jammer

?é arrival angle of 30°.

g
ol

(2

Parts b) and ¢) of Figure 18 show the frequency response in the jammer

direction and look direction. The jammer-direction plot reveals a deep notch at

*

the jammer frequency. The look-direction plot confirms that the unit-gain, all-

B
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Figure 18. Postconvergence Plots for the Four-element Frost ABF :
a) Beampattern
b) Jammer-direction Frequency Response
¢) Signal-direction Frequency Response
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pass response specified by the constraints has been attained.

Some of the contrasts between Frost ABF and CBF performances may be
seen by comparing Figure 3 and Figure 18. The notch depths in both Part a)
and Part b) of the figures are greater for the CBF than for the Frost ABF, thus
indicating improved jammer rejection.

A more dramatic view of the performance contrasts is provided by the
spectral plots of Figure 19. Parts a) and b) of the figure show ensemble averages
of the desired signal spectrum and the jammer spectrum. Part c) repeats the
ensemble-averaged Frost output spectrum that was shown in Figure 4. Part d)
provides the ensemble-averaged CBF output spectrum. The signal-cancellation
effects seen in Part c¢) are not present in the CBF spectrum, and extremely close

matching with the desired-signal spectrum is evident.

The differences between Frost ABF and CBF performance may also be
clearly seen in the time domain. Figure 20 contains 256-sample segments of time
domain data taken from the beginring of the simulation. Part a) illustrates the
desired-signal waveform; Part b) the Frost-ABF output; and Part ¢) the CBF
output. Both output waveforms show the transient associated with jammer
nulling. Nulling should be complete within 50 samples, and good tracking of the
desired signal should be seen. The Frost-ABF output, however, shows
considerable distortion due to signal cancellation. CBF tracking, on the other

hand, is essentially perfect after jammer nulling.
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0.025
0.0 0.5
a) Frequency
10.0
0.0 | 0.5
b) Frequency
0.025
<4,J”¢\\J/,‘\*\‘_k = 1.0 x 1072
0.0 0.5
c) Frequency
0.025
S = 1.0 x 1072
0.0 0.5
d) Frequency

Figure 19.

Input and Output Spectra for the Frost ABF and the Frost-based CBF

a) Signal
b) Jammer
c) ABF Output
d) CBF Output
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IV. PERFORMANCE OF THE COMPOSITE BEAMFORMER

The preceding chapter introduced the composite beamformer (CBF) and
illustrated the performance of a particular CBF realization based upon a simple
subtractive preprocessor and Frost's constrained LMS algorithm. An argument
was advanced that, due to the deliberate phase matching befween the master and
slave beamformers, jammer nulling is quite good in the CBF. Additionally, signal
o cancellation of the type that can be so destructive in a hard-constrained ABF is
effectively suppressed. A sample case was shown in which the expected
improvements over a Frost ABF were, in fact, realized by a CBF using a simple

signal-nulling scheme.

_ This chapter continues the exploration of CBF performance. The first
:g section examines the issue of CBF optimality in greater depth. The second
< section then describes further simulation experiments designed explicitly to probe
CBF behavior with regard to optimality. A third section considers convergence
time constants in the CBF and draws comparisons with the Frost ABF. The
fourth section describes CBF weight behavior near convergence and shows

contrasts between CBF and ABF behavior in that important region.

A. CBF Optimality in the Narrowband Case

The experiment of the previous chapter has indicated that, at least in a
selected case, the performance of the CBF at high adaptation speeds is greatly

superior to that of a comparable ABF. Questions remain, however, about the
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range of conditions for which optimal performance is approached. In this section

the issue of optimality will be investigated in greater depth for the important

case in which jammer signals are narrowband.

The discussion in this section will center upon the noise autocorrelation
matrix Ryy. As was shown in Chapter IIl, R}, governs the optimal®olution for
the Frost ABF. Ideally, the adaptive (master) processor in the CBF would
receive unperturbed noise.voltages and would thus tend toward the optimal
solution as indicated by Ry). In practice, the phases of interference signals are
preserved through appropriate preprocessor design, but the interference
amplitudes (or, equivalently, the interference-to-thermal-noise ratios) are altered.
It is of interest to comsider the influence of perturbations in interference-to-

thermal-noise ratio upon Ry}\.

The signal vector y; associated with the §** narrowband interference source

may be written as

’c j¢li ]
gitn

w = [(0;,P)y = [(6;,F)] . (4-1)

.e,¢‘l.

where f(0;,P;) is the pattern response of the K identical elements (or subarrays)
constituting the array, 0; is the arrival angle of the signal with respect to a
reference direction, P; is the signal power, y; is a propagation vector, and ¢ is

the signal phase at the I'* element with respect to a coordinate origin. For the

DR e S TR
.n"'-'."-" .-“.'-' Sor oo s




LA

<o N

iy §

"ot

L 4
i

Y,
Al

.. LR " ") B O P T o N S T i A L A R .
g N o e e e e e e T e T T T T T e

important case of a uniform linear array with element spacing d, (4-1) may be

specialized to

[ 1

cit

= [6:P)]| . ’ (4-2)

c,(k-l)¢l

o

where the first element is taken as the phase reference and
d, .
$; = 21r()‘—) sin 6; (4-3)
i
is the element-to-element phase shift for an arrival angle 6; (measured clockwise

from array broadside) and an interference wavelength of X;.

Pattern responses of two types will be of interest. For an ideal

omnidirectional element,

HWoF) = P . (+4)

If two such elements are placed a half wavelength apart and their outputs are

differenced to form the simple nullformer discussed previously, then
J2(0,P;) = P;[2-2cos(msin ) . (4-5)

The noise autocorrelation matrix Ryy for a K-element narrowband array
takes a simple form under the assumptions that the thermal noise voltages from
the elements are zero-mean Gaussian and mutually uncorrelated and that the M

incident narrowband signals have carrier phases that are uniformly distributed on

.....................
............
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(0,27) and statistically independent both of one another and of the thermal noises

of the elements. Specifically,

M
Ryy = I+ Y p; v 870, (4-6)

t==]
where I is the K X K identity matrix, p; is the power ratio between the §*4

interference signal and the thermal noise voltage, and o® is the thermal noise

variance. The power ratio p; incorporates the pattern response f(4;,P;) and o*:

pi = f(f;l’.') . (47)

Gupta and Ksienski [20] have observed that correlation matrices having the
structure of (4-6) may be inverted into a convenient form when the matrices are
reexpressed in terms of an orthonormal basis for {g;}. Their method will be used
to derive an expression for Ryy. This expression will then be used to determine

conditions under which the CBF solution approaches that of the Frost ABF.

The Gram-Schmidt process may be applied to construct an orthonormal
basis {g;}, =1, 2, ..., M, for the {2}, i=1, 2, ..., M. As a preliminary step the

first basis vector is computed:
=5 - (4-8)

Then a set of orthogonal vectors {p;}, i=1, 2, ..., M, is determined from
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1.
% = %~ _El (%'g) g; (4-9)
J-
and normalized according to
0 if pTp* =0
& = . (4-10)
% .
T otherwise
o

The vectors {g;} may now be written in terms of the basis vectors. The

expression given in (4-9) may be rearranged to yield

ff)i e+ - (4-11)
o

Forming the transpose in (4-11) and postmultiplying by ¢;° then gives

W7o =27 = @)y = T (4-12)

where the orthonormality of {g;} has been used to simplify the expressions. By

using (4-11) and (4-12) together with the definition

a; & o7g (4-13)
y; may be written as
i
2 0.‘" ,ﬂj . (4-14)
j=1

The expression (4-6) for Ry now becomes

...............
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M i N o T
RNN = {I + E Pi ['2-31 - Th ,q,] [kz-:l (s 5 _q,,] }0‘2 . (4-15)

Because the optimal weights for both the Frost ABF and the Frost-based CBF
depend upon Rg}, it is necessary to invert the expression on the right-hand side
of (4-15). The inversion technique depends upon the matrix inversion lemma®’

and is most readily applied by first considering the case M = 1. In that case

(4-15) becomes

Ryy = {I+ profgi1al } o2 . (4-16)

Application of the inversion lemma to (4-16) then yields
- » - 1
Rik = {I-pefigi+ ol mefigil ol } 5 (417)

which rearranges to the form

e T
— + g}
P14}
By orthonormality,
afgi =1 . (4-19)

.The lemma is discussed in Appendix B in another context.

...........................
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5
i ay = of ¢f = T . — 1 - (4-20)

e T
Rih = JI- ‘l" 2 \L (4-21)
— + l o
41
It is now clear that, provided p, >> 1,
1o~ 1
Ry = {I-gi o} — (+22)

That is, if the jammer-to-thermal-noise ratio is large, the inverse of the noise
autocorrelation matrix is essentially independent of the precise value of that
ratio. Because the optimal solution is governed by Ry}, the solutions toward
which the ABF and CBF tend will be indistinguishable, provided the jammer-to-

thermal-noise ratio is large in both adaptive processors.

In the ABF with omnidirectional elements the jammer-to-thermal-noise ratio
is independent of jammer angle, and the ratio is thus fixed solely by relative
power considerations. In the CBF with element differencing the jammer-to-
thermal-noise ratio is dependent upon jammer arrival angle in the manner shown
in (4-5). At angles approaching 0° the received jammer power goes toward zero,
and the transition from (4-21) to (4-22) becomes questionable. It thus becomes
clearer that ABF and CBF equivalence is not universal and that the nullformer

becomes the crucial factor in CBF convergence toward the optimal weights.

...............................
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If consideration is now given to the two-jammer case (4-15) becomes

Ryy = {I + pialaial + padiglel + poogiommgie?
+ po0p02930] + pradgiel Yo . (4-23)

Repeated application of the matrix inversion lemma shows that

o T
a4 o~ 4242 1
Rik = W-giol -——1—\—7 . (424)
1+ >
P23

Again, under the assumption that p,a3 >> 1, i.e., that the power of the second
jammer is well above the noise and that the projection of the second jammer's

propagation vector onto the second basis vector is nonzero

- . . 1
Rk = {I-gfal -934f} = - (4-25)

This expression is, like (4-22), independent of the jammer-to-thermal-noise ratios
under the assumptions stated; it follows that the ABF and CBF solutions are

again equivalent.

If the methods and assumptions just described for the single-jammer and

dual-jammer cases are extended to the case of M jammers, then

Ry = {1+ 2 e’ }— : (4-26)

tm]

That is, the ABF and CBF solutions become indistinguishable for the cases where

jammer-to-thermal-noise ratios in the adaptive processors remain large.

........
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Two conditions must be satisfied for the jammer-to-thermal-noise ratio in
the CBF to be large. In the first place, of course, the jammer signal must arrive
at the array elements with appreciable power. This will usually be the case if the
jammer constitutes a threat. A second condition is that the nullformer not
discard so much jammer energy that the jammer contribution is driven into the
thermal noise. In the case of the two-element subarray, this difficulty may arise
at angles near the look direction, i.e., within about 10° of the signal azimuth;
with other nullformers the regions that seriously attenuate jammer signals may

be different.

A third condition must also be satisfied if the CBF weights are to reliably
approach optimality. This last condition relates to the number of degrees of
freedom available versus the number of jammers that must be nulled. In the
narrowband case one complex weight is adequate to null a jammer. If there are
K beamformer channels, then the number of jammers must be less than or equal

to K-1 since one complex weight is lost to the constraints in a narrowband Frost

ABF.

B. Further Simulation Experiments with the CBF

Two additional simulation experiments were devised to assess CBF
performance under more difficult conditions than the single-jammer scenario of

Chapter 3. Particular attention was given to testing the optimality criteria just

discussed.

I Y
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The signal/jammer scenario for one experiment is shown in Figure 21. The
CBF configuration is identical to that used in the experiment of Chapter 3, but
the jammer environment has been altered. The jammer J, is a signal centered at
0.25 f,imp With a bandwidth of 1%. The actual power of J, is 2.0, and its
arrival angle is -10°. The jammer J, is equal in center frequency and bandwidth
to Jy, but it is independent of J,. The power of J, is 1.5, and its arrival angle is
80°.

With the restricted number of weights in the CBF, there were insufficient
degrees of freedom to meet the criteria stated in the previous section.
Specifically, there were only enough weights to null one jammer after allowing for
the loss of degrees of freedom to the constraints. It was of interest to examine

performance under these conditions of CBF saturation.

Figure 22 shows the beampattern plot obtained after initial transients had
disappeared. A relatively shallow null was placed on J,, while there was no
visible attenuation of the stronger J,. This behavior reflected the perception of
the jamming environment within the master beamformer where the nulling
circuits had attenuated J, and boosted J,. The actual solution reached by the
beamformer in this case was a dynamic one in which the power of J, was reduced
to approximate that of J,. Additionally, the response to J, was adjusted
dynamically to approximately cancel the contribution from J,. Unfortunately,
the solution was one which mapped poorly to the slaved beamformer because of

the vastly different nullformer influences on the two jammers.
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A second experiment was conducted in which the same signal/jammer
scenario was used, but the CBF was extended to provide two additional degrees
of freedom in both the master and the slave. Figure 23 shows the configuration

of this CBF.

The CBF beampattern after convergence is illustrated in Figure 24.

Extremely deep nulls have been placed on both J; and J,, and the beamformer

"‘3{ output consists almost exclusively of the desired signal. It is interesting to note
o
:: that the null depth on J, remains somewhat greater than that on J,. This
reflects the relatively greater jammer-to-thermal-noise® ratio of J, within the
CBF master as a result of nullformer action.

"j C. Convergence Time Constants

4
B As was stated in Chapter 2, convergence of the constrained LMS algorithm
% <
-c-: is governed by the eigenvalues of P Ryy P. With the aid of
35

' P Aj-ccTeytcerT (2-16)
-,: and

3 .
b Ryx = CRpp C* + Ryy (3-2)
' the matrix P Ryy P may be rewritten as

-
| :" ® Thermal acise per element was set to —40 dB relative to unit power.

o+

d
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2
PRy P = [[-C(CTCY' CT|[C Rgg CT + Ryy| P . (427)

bl
)
[RT%

which simplifies to

NY
v . g e
tetatet

e
)

A
-8 n

PRyxy P = PRyyP . (4-28)

::f Once again it is seen that the role of the desired signal in the Frost ABF is very
P
R4
-1 limited and that the noise voltages govern convergence. It follows that, if an
i85 ideal nulling circuit were realizable, CBF and ABF convergence rates would be
" identical.
In practice, however, the nulling circuits are imperfect, and the noise
b5
,r: voltages in the CBF master only approximate the noise voltages in an equivalent
L
o

' . ABF. The actual CBF convergence rates are governed by the noise voltages that
"g are present in the master. These voltages may be expressed as
X
.1 where A is a matrix that describes the action of the nulling circuits and X{¢) is
‘ the vector of voltages from the augmented array that is needed for the CBF.
i
N Because the nulling circuits act to remove desired signal components (4-29) may
N

',
£ also be written as
2
-
- N = A(S®) 4 N) = ANl®) | (4-30)
" The analog of P Ryy P in the Frost ABF then becomes

¢,
-
i PRyy P = PA R AT P (4-31)
)
." 3
X for the Frost-based CBF.

X
!
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Nullformer action can either increase or decrease CBF convergence time
relative to a equivalent ABF. An experiment was conducted to compare CBF
and ABF performance in the case involving a single, sinusoidal jammer. The
ABF that was selected was the two-element structure of Figure 6; the CBF was
an equivalent structure with three elements and differencing circuits. The two
arrays were steered to broadside and constrained to provide an all-pass response
in that direction. Signal power was set to zero to avoid the distracting influence
of signal cancellation in the ABF. A unit-power jammer signal at a frequency of
0.25 f,,mp Was injected from endfire (# = 90°), and the two systems were
allowed to adapt (at g = 1 X 107) until output power was reduced to -204B
relative to the unit input power. The experiment was repeated to obtain the
number of adaptations to convergence at jammer angles ranging from endfire to
broadside. The results were plotted in Figure 25, which shows the number of

adaptations to convergence versus jammer angle for both the ABF and the CBF.

Figure 25 shows that, depending upon jammer angle, either the ABF or the
CBF may provide the more rapid convergence. The CBF yields the better
performance in the range from 20° to 90° where the two-element array gain
exceeds isotropic. At about 20° the two curves cross, and at angles nearing
broadside the ABF provides superior performance. Convergence of both systems
becomes very slow at angles approaching the look direction where the
requirements of jammer nulling and the requirements of the look-direction

constraints begin to conflict. The ABF will be more effective in its response to
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jammers arriving near the signal. On the other hand, the CBF will be somewhat
more tolerant of small errors in array steering because of its sluggish response at
angles near the look direction. It appears likely that, for small steering errors,
signal nulling in the CBF will be deferred indefinitely by a reasonably dynamic
electromagnetic environment or by the artificial injection of a small amount of

noise into the system.

D. Weight Quieting in the CBF

An important aspect of the performance of an adaptive system is its
behavior near the optimal solution. Ideally, the weights of an adaptive system
should move to the optimal solution, remain at precisely that point in weight
space, and displace only in response to a change in the optimal solution, i.e., in
response to an actual change in the environment. In practice, a compromise
must be reached between the ability of an adaptive system to hold the optimal
solution in a stationary environment and to track the optimal solution in a
nonstationary environment. The nature of the compromise is not necessarily the
same, however, from system to system. This section will compare the
performances of the Frost ABF and the Frost-based CBF near the optimal
solution and will show from another point of view that the CBF enjoys a

performance advantage.

Weight updating in the Frost ABF is accomplished in accordance with the

recursion relationships given in (2-14) or (2-17). The same weight updating

..............................
................

__________
.............
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L

i

£y technique is used in both the Frost ABF and the Frost-based CBF, but the data
@ samples entering the computations differ significantly as the two systems
e

%“ approach convergence. The contrasts may be seen by examining any of the

weights; let the first weight w; be selected.

Initially the Frost ABF will be considered. The difference between the

values of w at two successive samples may be written from (2-14) as

w(k+1)-w (k) = -py(k)zl(k)—% f} [w (k) - py(k)z; (k)] + -i(—'
j=I
(4-32)

Because the constraint f, is, by definition, the sum of the weights in the first

column of the beamformer, (4-32) may be simplified to

wilk+1) - wilk) = wy(k) =) - 3 50
P2

(4-33)

Let it be assumed that at the k** sample instant the adaptive system has

reached a set of weights that closely approximates the optimal solution. Then
w l(k) = w l. . (4’34)

Additionally, if the constraints are set to provide unity gain and an all-pass

response in the look direction, the system output is
y(k) = a(k) + n (k) (4-35)

where s(k) is the signal at the k** sample time at any of the taps in the first

’{4‘/ R A T AT R T R TP S S NS -
N sy Py R P I RN A S A gAC L S




column of the beamformer and n,(k) is the residual noise that exists at the

beamformer output with optimal weights.

The tap voltages in the first beamformer column may also be stated in terms

of signal and noise components:

z;(k) = s(k) + n;(k) , i=1,2 .., K . (4-36)
Note that the cophased signal is the same at taps 1 through K. This allows (4-
33) to be simplified to

[wilk+1) - wy(K)lapr = -pls(k) + n. (k)] [n, - ‘;l(‘ fx‘_,l nlo. (4-37)
j=

The CBF weight recursion will now be considered under like circumstances.
Again assume operation near W°®. Further assume that the nulling-circuit
performance is nearly ideal so that differences in the noise voltages between the

CBF and a comparable ABF may be neglected. Then the CBF tap voltages are
z(k) = ni(k), ¢=12.,K . (4-38)

The weight difference is obtained from (4-33) as

itk )= wilblcar = -wln, (8] (- £ ml . (429)
P2

The contrast between ABF and CBF weight behavior near convergence may
be seen by comparing (4-37) and (4-39); the difference lies in the inclusion of the

signal term in the ABF update expression.

.....................
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t The significance of this contrast is illustrated in Figure 26, which shows a

cut along the w, axis through the error surfaces of the two systems. Under the

AR NS

, assumption of negligibly different noise voltages in the ABF and CBF, the shapes
of the two error surfaces are identical. The ABF minimum, however, is
; substantially elevated above the CBF minimum. If a useful signal is to be
.. delivered by the adaptive system, output signal-to-noise ratios in excess of 10 dB

are ordinarily required, and ratios in excess of 20 dB are certainly desirable.
5 These ratios imply that the signal levels will typically be three to ten times the
“ - noise levels as the ABF nears convergence. The typical weight adjustment in the
‘:; ’ ABF will thus be dominated by signal effects as the adaptive system nears
b convergence. This becomes especially important when it is realized that the
'; signal-times-noise terms amount to short-term estimates of the correlation
f' between the signal and the noise. In other words, the signal influence in the ABF

should not be regarded as simply a random weight adjustment, but as a
',l purposeful step toward effecting signal cancellation. Because the CBF weight

adjustments are not influencec by the signal, the CBF weights exhibit less

LAY
2

Ly J‘J.J 2

variation about the optimal solution than the weights of the comparable ABF.

s A4, ."‘

...‘

Further, the CBF weight adjustment process cannot cause signal cancellation.
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V. SUMMARY AND CONCLUSIONS

It has been shown that interaction between the desired signal and
interference signals can lead to partial or total cancellation of the desired signal
within an adaptive beamformer (ABF). The signal cancellation phenomenon may
arise spontaneously in a multipath environment, or it may be deliberately or
accidentally induced by intentional or unintentional jamming. High adaptation
rates increase the susceptibility to signal cancellation in beamformers that have

not been designed to avoid the effect.

A composite beamformer (CBF) has been described that avoids signal
cancellation. The CBF makes use of both an adaptive beamformer and a
nonadaptive, slaved beamformer. The inputs to the adaptive beamformer are
preprocessed to exclude the desired signal, but retain representation of the
interference signals. By restricting the adaptive process in this fashion, a solution
(i.e., a set of beamformer weights) is generated that influences only the
interference signals. Weights from the adaptive processor are copied to the
slaved processor, which is connected directly to the antenna elements and which
produces the useful output of the array. The CBF delivers much better
performance with regard to signal cancellation than a more conventional ABF.
Simulation data have been presented to show the improvement that can be

obtained.

The performance of a Frost-based CBF has been compared with that of a

Frost ABF. If a narrowband system is assumed, it has been shown that the
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Frost-based CBF will tend toward the optimal (i.e., the Wiener) solution
provided 1) the preprocessor admits energy from each jammer, 2) energy from
each jammer dominates the thermal noise, and 3) there are sufficient degrees of
freedom to null each jammer. The properly designed CBF is thus equivalent to
the comparable ABF in terms of the ideal solution. The CBF will not, however,
exhibit signal-induced weight variations. Performance will therefore be improved
in those cases where signal cancellation occurs in the ABF. Convergence toward
the optimal solution will, in general, be different for a CBF and an equivalent
ABF that are operating in the same environment. The convergence-rate
differences are governed by the influence of the preprocessor. In some cases the
CBF will attenuate a given interferor more rapidly than the ABF, while in other
cases the reverse is true. If the preprocessor is designed to match the basic array
element pattern except for a sharp null in the look direction, the convergence
rates for the CBF and the ABF are essentially the same. An exception occurs for
a jammer incident from very near the look direction. The CBF responds even
more sluggishly than the ABF to such an interferor. It is also true, however, that

the CBF is less sensitive to small steering errors than the ABF.

The studies of signal cancellation and the CBF have thus far suggested
several areas for further investigation. The signal cancellation phenomenon itself
is not so well characterized as might be desired. An improved characterization of
the phenomenon may provide a better means for analyzing the importance of

signal cancellation in various systems and environments. Additionally, this work
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may reveal new ways to avoid the effect in adaptive arrays.

Perhaps the most promising area for further CBF improvement is in the
preprocessor that nulls the target signal. Work thus far has centered on the
element-differencing scheme because of its simplicity. Other preprocessor
configurations, though more complex from a hardware viewpoint, are capable of
yielding subarray patterns that provide a better match between the patterns seen
by the adaptive beamformer and the slaved beamformer. Improved matching
will assure that the CBF performance (both dynamic and asymptotic) is
approximately that of the equivalent ABF, except for the superior CBF
performance with regard to signal cancellation. Steyskal [21] has recently
described a procedure for optimal pattern matching subject to null constraints.

This procedure appears to be well suited for preprocessor design.

The general procedure of adapting in the absence of signal can sometimes be
applied without resorting to the CBF. Systems that make use of low-duty-cycle
or frequency-hopped signals can employ other signal-exclusion schemes that arise
naturally out of the signaling format. Work is in progress at Stanford on
cancellation-free adaptation schemes for systems in these classes. These schemes
will trade timing constraints against the spatial-nulling method of the CBF and

will almost certainly result in less complex adaptation schemes for systems that

do not continuously occupy a channel.
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APPENDIX A

s RFLTETELRLL 7o Leld 32,
v
.
{

ANALYSIS OF THE DYNAMIC SOLUTION

FOR THE SINUSOIDAL CASE

. AR

Chapter 2 discussed the dynamic solution that is tracked by an ABF when

¥ W oy B

large values of the adaptation parameter j+ are used. A computer simulation
formed the basis of that discussion, and certain claims were made without a
supporting analysis. In this appendix the dynamic error-surface minimum is
examined analytically, and a mathematical model is developed that supports the

discussion in Chapter 2.

In Chapter 2 the Frost ABF under study was mapped into an equivalent
adaptive noise canceller (ANC) in order to reduce the problem dimensionality and
simplify the analysis. This same mapping will be used here; Figure A-1 reviews

the ANC structure that will be analyzed.

The ANC structure assumes separate availability of the desired signal and
the single jammer signal, both of which are sinusoids in the case under
consideration. The desired signal is taken directly to the output summing
junction in conformance with a unit-gain, all-pass constraint in the look
direction. The jammer signal is processed through a two-channel (in-phase and
quadrature) filter with one weight per channel and is subtracted from the desired

signal at the output summing junction. The ANC output is also the error signal

that is fed back to control adaptation of the filter weights. In the notation
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indicated in the figure, the error is

(z) = d(z) - [wy2y(z) + wazofz)] . (A-1)

The task of the adaptation algorithm is to minimize some function of ¢(z)
by selecting appropriate values for w; and w,. Under the assumptions of
stationarity and slow adaptation, the effectiveness of an adaptation algorithm is
often established by comparing performance with a minimum-mean-square-error

solution that is derived analytically. It has been established that the Widrow-

Hoff LMS algorithm delivers asymptotically optimal performance in the
stationary case, i.e., the LMS solution tends to the Wiener solution as u tends to

zero.

Here, however, interest centers upon an ABF that is adapting rapidly and is
therefore operating on the basis of short-term estimates of the envhonment. At
high adaptation rates it is unrealistic to expect close conformance with the
Wiener solution, which is derived under a very different view of the data.
Instead, an objective function is needed that more accurately reflects the use of a
finite time window and allows the solution to evolve over time. An alternative

objective function & will be taken as the average square error over the interval A:

. ALt )
§,8) & + [ Ha)ds . (a-2)
This objective function has the desirable property of extending to mean-square
error as ¢ and A increase without bound. Nebat, et al, [1] have made use of a

similar finite-time integration in exploring the effect of record length on the

..................................................
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[ 7

N correlation of complex exponentials.
D 4 Combining (A-1) and (A-2) gives
. . 1t 2w, ¢ 2w, ¢t

&t,A) = ~ f‘_Ad (z)dz - = L_Ad(z)zl(z)dz - ]‘_Ad(z)zz(z)dz

g wi ¢ 2w,w, ¢ wi ¢

é + 3 J_,zi(2)dz + A §_, nil2)zo(z)dz + = f_, 23(z)dz
)

: (A-3)
‘! To provide a more compact notation, let

; AL gt .
-~ 'l'j(t:A) = Z A zs'(z)zj(z)dz $,1=12

) 1 .t .

& pi(t’A) .e'.' X It-A d(z)z,-(z)dz =12 . (A’4)
3

Equation (A-3) may now be rewritten as

R R
< teata

: . 1 ¢

4 Ee.8) = + [, P(a)dz - 20, p/(t,8) - 2w, py(t,A)

t + wiry(6,4) + 20wy rip(t,4) + WS r(t,A)  (A)
¢

Minimization of &(¢,A) is accomplished by taking the gradient with respect
M to the weights, setting the gradient to zero, and solving for w, and w,. The first
: two steps of this procedure yield

g . 2 p(t,4) + 2wy ryy(t,A) + 203 r(8,8)] o

: | VEEA) = L2 py(t,A) + 20, rigft,A) + 2w, reg(t,8) [ = fo] (AS)

The solution of (A-6) may be written as

LA
L
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W 1m ru(t,8) rt, ) T [pi(t,8)
2m = rz‘(t,A) rzz(t,A) pz(t’A) ’ (A'7)

where w,, and w,, are the values of the weights that minimize the objective
function during a given time window and where existence of the matrix inverse is
assumed. The equivalent matrix equation for (A-7) is

W, = R7Y(t,4) P(t,A) (A-8)
Equations (A-7) and (A-8) are finite-time-window versions of the familiar
Wiener-Hopf equation.

Since the dimension of (A-7) is only two, it is simple to expand the matrix

inverse and obtain expressions for the weights:

Wim = {m ] {'ﬂ('!A) Pl(‘vA) - 'IZ(‘:A) PZ(trA) }

Wom

{det[Rl(c,A)]'} {—m(t,A) pi(t,8) + ryy(t,A) p,(t,A)} . (A-9)

Equations (A-9) describe the optimal weights for the two-weight adaptive noise

canceller at time ¢ when averaging is over a window of duration A.

In order to obtain a direct comparison with the sinusoidal case considered in

Chapter 2, let

d(z)
z,(z) cos (wyz+ ¢)

zx(z) = sin (wyz+¢) . (A-10)

CcOs W,z
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i These signal definilions lead to the following values for components of the
) R(t,A) matrix and the P(t,A) vector:
> ,
: wed A
¥ ru(t,A) = -é-+ % sinc -2— ]cos[2[wz+ ¢+ _w_,_ ]]
rioft,8) = ry(t,8) = i smc[—]sm[ [wzt + ¢+ == ]]
_1_1 g fea
) roo(t,A) = 2 " g sinc x| cos[ [w2t+ ¢+ ]]
wi-wg)A | wy—we)A
s pi(t,4) = L inc (—l——z)—- cos|(w;—wy)t - ¢ + _(__1_2)_
: 2 _ 2
. 1 (i + wy)d (wy+wg)A
2 + 2 smc[ o cosf(wyt+wo)t + ¢+ 2
3 1 fwwa ] (wi-wp)A
3 pi(t,4) = - 9 smc[ Py ]sm[(w,-wz)t -¢+ 2
X 1 . |(wtw)d | (wy+ wy)A
3 + Esmc[—r sin [(w;+ wo)t + ¢ + —
. (A-11)
1 Equations (A-9) and (A-11) provide a complete specification of ideal weight
; behavior in the ANC problem being considered. It would be possible at this
e point to utilize these equations to write expressions for wy, and wo,. It is
3
5 apparent, however, that the combined complexities of (A-9) and (A-11) would
¥
lead to a rather unwieldly pair of equations for the weights. A more satisfactory
2 approach is to continue with the existing equations and examine some particular
7
; aspects of weight behavior that bear upon the discussion in Chapter 2.
Initial attention will be directed toward Equations (A-11). Sinc functions
A
appear prominently in the expressions for all of the components of the R(t,A)
:
R o S
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35:'. matrix and the P(¢,A) vector. These sinc functions govern the peak amplitudes

of most terms in the correlation expressions and thus play a key role in
A determining weight behavior. The arguments of the sinc functions involve only
the time window A and some function of w; and w,. This latter quantity is fixed
for a given problem statement, but the equivalent time window can be governed

in an adaptive system by choice of the adaptation parameter g. The observation

j that weight amplitudes can be influenced by the choice of adaptation parameter
’ harmonizes well with the behavior observed in the experiments of Chapter 2.

;:: A better understanding of the relative importance of the terms in (A-11) can
;:: be obtained from a closer study of the sinc functions. Figure A-2 is a plot of sinc

function magnitude as a function of the argument. An upper bound for the sinc

f' function is also plotted to reflect the inverse dependency on argument that
" dominates the sinc function behavior. It is clear from the figure that a small
: argument is necessary if the sinc function is to contribute significant amplitude to
N

:';3 a term. Conversely, it is easy to see that, unless w; and w, are equal, large values

of A will lead to large arguments and vanishing amplitude contributions from the

.‘._
“atalef
.C\C'..

terms involving sinc functions, i.e.,

W

-7

- ) 1

‘ 1 t,A) = —

% Agnw ol ) 2

. im r(t,A) = lim ry(t,A) = 0
o A—o00 A~o0
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lim p‘(‘,A) =0

A—00

lim pot,A) = 0 . (A-12)
A—oo

These are the same values of the correlation functions that would have been
obtained from the traditional calculations involving expected values. The values

in (A-12) may be used in (A-8) to compute the Wiener weights:

Wl’ =0
ws =0 (A-13)

The vector components p,(¢,A) and p,(,A) each involve sinc functions with
arguments containing the sum w; + w, and difference wy - w, of the signal and
jammer frequencies. Since w; and w; will be taken as non-negative numbers in

this context,
W+ W 2 wp-w (A-14
2 = W 2

for all allowed choices of w; and w,. When appreciable levels of cancellation are
occurring, the argument A(w;-w,)/27 will be small so that the leading terms in
pi(t,A) and p,(t,A) will have magnitudes approaching unity. The argument
A(wy+ wy)/2% can be no smaller than A(w,~w,)/2x, and can be much larger. In
the case considered in Chapter 2, for example, w; + w, was approximately 50
times larger than w, - w,. This difference was sufficiently large to assure that

difference-frequency terms dominated weight behavior over the entire

adaptation-parameter range that yielded measurable deviation from the Wiener

solution. Sum-frequency influence was visible in the weight loci for some values
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of the adaptation parameter, but never caused deviations of more than a few

percent from the basically circular loci.

It is useful to look more closely at weight behavior when difference-frequency
terms are dominant. Assume that w; and w, are nearly equal and are sufficiently

different from zero so that

(wi—wo)A
o — < 05 (A-15)
and
wy + Wap >> Wy - Wy . (A—lB)

Under these circumstances, the difference-frequency terms in p,(¢,A) and po(¢,A)

are dominant and

o - . .
=1L (ww)A (wiwo)A
pi(t,A) = g tine T cos[(w,—wz)t -¢+ 2
=3 [(wy—w2)A | w A
po(t,A) = L gine _(ﬂl_z)_ sin [(wl—wz)t -¢+ (_ﬂz)_ . (A-17)
2 | 2 2
+ wy)A a
Further, if sinc[-(-wlz—:'z)-] is negligible, then so is sinc[ﬂ:—- ] This

observation allows the approximations

2O |

ru(t,4) =

ralt8) = ry(t,d) =0

______ P P R A N A .

------
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L roo(t,A) = 2 (A-18)
3 > Now, from (A-9)
!
~ [(wy—wo)A | wWy—wo)A |
B Wim = 8inc (—l2—:l— cos[(w,—wz)t -9+ -(;2-2)—-
= ~  [wrwa ] (wym)d |
Wop = ainc‘-—zx—- sin f(w,~wo)t - ¢ + — . (A-19)
33: b o L
X,
u Equations (A-19) describe a phasor rotating in the w; - w, plane at the
; difference frequency (w;—w,). The magnitude of the phasor is proportional to the
1‘::'; magnitude of the cross-correlation functions p,(¢,A) and po(¢,A).
For a given time window A and a specified time ¢, the phasor given by

j‘% Equations (A-19) defines the weight pair that minimizes the~-ANC output.
j

¥ Equivalently, the phasor marks the projection of the dynamic error surface
;«f . minimum onto the w, - w, plane. As time evolves, the tip of the phasor traces
;, out the circular locus of the projection of the minimum. This is the behavior
=

N that was exhibited in Figure 12 of Chapter 2.

iy
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APPENDIX B

; AN ALTERNATIVE EXPRESSION FOR THE

OPTIMAL WEIGHTS IN A FROST ABF

Frost [1,2] derived an expression for the optimal weight vector in a hard-

constrained adaptive beamformer:
Wier = Rik CICTREZCI'L (B-1)

where R A E[(XXT] is the correlation matrix for the tap voltages,
XX :

LA fa - £5]T is a constraint vector, and

(B-2)
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is a constraint matrix. In this expression for W pr, the dependency on the signal
environment is given in terms of the tap voltages, i.e., in term of Ryy, which

may be estimated from X.
In this appendix it will be shown that an equivalent formulation for the
optimal weight vector may be given in terms of the vector N where
N=X-8 (B-3)
is the vector of tap noise voltages that is obtained by deleting the desired-signal
component S. In particular, it will be shown that the equivalent expression is
Wisr = RINCICTRRNCI' L (B-4)
where Ryy & E[NNT] is the correlation matrix for the tap noise voltages.

The balance of this appendix is broken into two sections. In the first section
the validity of (B-4) will be demonstrated for the narrowband case. The second

section will then examine the somewhat more complicated wideband case.

A. The Narrowband Case

In the narrowband case it is assumed that signal bandwidths are small
enough to allow incident signals to be characterized as sinusoids with amplitude

and phase variations that are slow with respect to the carrier frequency. Under

these circumstances a single complex weight is adequate to adjust the gain and
i phase of each beamformer channel. That is, the tapped-delay-line filter
b

constituting each beamformer channel is replaced by an in-phase weight and a
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quadrature weight. For the narrowband Frost ABF, the constraint vector

becomes simply

L = ,l ’ (B‘S)

with f, a complex number giving the in-phase constraint as its real part and the

quadrature constraint as its imaginary part. Additionally, the constraint matrix

takes a simple form:
C=N1---3T &1 . (B-6)

The correlation matrix Ryy must be decomposed into its desired-signal
component and its noise component in order to proceed further. This may be

accomplished by rewriting (B-3) in the form
X=N+S (B-7)
and then making use of the cophased nature of the signal to obtain
X=N+Vva1l , (B-8)
where the signal amplitude is taken as Va. Now, (B-8) may be used to obtain

Ryx = E|XXT] = E[NNT]+ 8117

Ryy + 8117 (B-9)

where Frost’s assumption [1] of a lack of correlation between signal and noise

voltages has been used to simplify the expression for Ryy.

It will be useful at this point to focus attention on the factor Rgk C that

RN PR U AU SN S W J




appears twice in (B-1) and to make use of an observation by Baird and Zahm 3]
regarding the utility of the matrix inversion lemma in a closely related problem.
The lemma may be drawn from [4] in the following form:

If a nonsingular matrix H of order n can be written in the form
H = A+ BDE , (B-10)

where B, D, and E aren X p, pX p, and p X n, respectively, and A and

D are nonsingular, then
H' = A'-A-'B(D'+ EA"'B)' EA®' . (B-11)
The lemma given in (B-11) may be used to invert Ryx in
Rk C = [Ryy + sl1T]?1 . (B-12)

As a preliminary step it is noted that Ryy, which is analogous to the A matrix
in (B-10), is invertible because it is assumed to be positive definite. The vectors
el and 17, which correspond to B and E in (10), are K x 1 and 1x K,
respectively. The D matrix in (B-10) degenerates to the scalar 1 in (B-12) and is
clearly invertible. With the applicability of the inversion lemma established, (B-
12) may be written as

s Rk 117 Rl
(1+ s 1T Rk )

RgkC = | Rk 1 . (B-13)

Exparding gives
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~1 -1 TR-I _ R-I TR-I
R C = Ryn 1+ 8 Ryn(l NN«:»)]- 8 Rynv 11" Ryn 1) , (B14)

c A+ s1TRVD . (B-15)

Because (LT Rz} 1) is a scalar, the rightmost two terms of (B-14) can be written

in the same form and cancelled to yield

Rk C = = . (B-18)

The expression in (B-18) may be substituted in (B-1) to obtain the desired

result:

) R\ C [ cT Ry
Wipr =

C -1
, . ] L = RRNCICTRRLCI' L .(B-17)

B. The Wideband Case

The beamformer in the wideband case is assumeda to contain K filters, each

with J taps. The KJ-element vector X of tap voltages may again be written as
X=N+S§ |, (B-18)

where N is the vector of tap voltages attributable to noise and interference and
S is the desired-signal vector. In general, the components of N will each be
different due to independent noise in each channel and due to the fact that

interference signals will typically not be aligned across the array. The signal, on

.......................................
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the other hand, is aligned across the array and is therefore identical down any
column of taps within the beamformer. The special structure of S may be

expressed by the relationship
S =CR |, (B-19)
where C is defined by (B-2) and
R A [s(k) s(k-1) s(k-27) - - s(k - (J-1)7)]T (B-20)

is the vector of desired-signal voltages at the taps of any beamformer delay line.

Combining (B-18) and (B-19) yields

X =N+CR . (B-21)

The correlation matrix for the wide band case may be computed based upon

(B-21):

Rxx = E[(N + CR)NT + RTCT)) (B-22)
Rxy = E|[NNT} + CE[RRT)CT . (B-23)

The transition from (B-22) to (B-23) has made use of the assumed lack of

correlation between signal and noise. Alternative forms for (B-23) are
Rxx = Ryy + C RppCT (B-24)
and

Ryx = Ryv + Rgs . (B-25)

It should be noted that Ryy and Rgg are dimensioned KJ x KJ, while Rpp is
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dimensioned J x J. The difference in dimension between Rgg and Rpp reflects,

of course, the redundancy in Rgs.
The matrix inversion lemma that was used in the narrowband case will
again be used to invert the matrix Ryy as expressed in (B-24):
Rix = Ry - RikCIRgk + CT RGhCI™ CTRyy . (B-26)
Both Ryy and Rpp are assumed to be positive definite and therefore invertible.

The relationship given in (B-26) will now be used to structure components of
the expression for Wipr given in (B-1). The leading factor is easily constructed

by postmultiplying (B-26) by C:
RzkC = RRgAC - RgkCIRzh + CTRzLCI CTRGAC . (B-27)
The central factor is obtained in two steps. First, (B-27) is premultiplied by
cT.

CTRikC = [CTRjNC) + [-CTRFNC] [Rik + CTRFNCI! [CTRR)C)
(B-28)

The matrix inversion lemma is then applied once again to obtain:

[CTRikC]! = [CTRLCI™! + [CTRRACI™ [CTRRAC] { [Rek + CTRFLC)
- [CTRzkCIICTRENCI! [CTRLC)
[CTRgkC)CTRRLCI?
[CTREC]! = [CTRRACI' + Rpp . (B-29)

Equations (B-27) and (B-29) may now be used to synthesize
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% R CICTRECI! = {Ri\C - RFNC[Rzk + CTRRAC|! CTRiLC}
{[CTRZNC] + Rpr} . (B-30)

Performing the indicated multiplication on the righthand side of (B-30) and

ATCIOW OO

< simplifying yields

X

8 RZACICTRECI! = Ri) CICTRFACI™ + RiLC Rpp

' - RiNC[Rzk + CTRFNCIY,

P - RFANCIRRh + CTRFACI™ CTRZNC Rpp . (B-31)
<

34

<; After it is recognized that the J x J identity matrix I; may be factored as

: I; = Rgh Rpp (B-32)
3\:':

N (B-31) may be rewritten as

v Rk CICTRZCIY = RGNCICTRFACI + RFNC Rpp

b - RFACIRzh + CTRANCT' [Rik + CTRFAC| Rpp . (B-33)
3 This last equation readily simplifies to

RECICTRECI = RehCICTRIC] . (B-a1)
5 Postmultiplying (B-34) by the constraint vector £ leads to the desired result:
Wigr = RikC[CTRyx-1C|" £ = RFACICTRFLCI L

)

2

2

N
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APPENDIX C

AN ANALYSIS OF SIGNAL INFLUENCE BASED

UPON THE GENERALIZED SIDELOBE CANCELLER

Another vehicle for analyzing the role of the desired or look-direction signal
is provided by the Griffiths-Jim generalized sidelobe canceller [1,2], a form of
which is diagrammed in Figure C-1. In this beamformer there is a fixed processor
(shown at the right side of the figure) that operates directly upon the signals
from the array and implements the look-direction constraints as stated by
{f;}, i =1,2, .., N. Note that the look direction is perpendicular to the array
in the case shown; steering delays are needed for other look-direction choices.
There is also a second, adaptive processor that operates upon the difference
signals between adjacent elements and therefore is not exposed to look direction
signals through the signal vector X .° The output of the adaptive processor is
subtracted from the output of the fixed processor to obtain a useful signal. This
signal also constitutes the error signal that is used in an LMS update algorithm
as opposed the more complicated constrained LMS algorithm that would
otherwise be needed to implement hard constraints. It has been shown [2], that
the Frost ABF and the generalized sidelobe canceller generate equivalent

solutions when the sidelobe canceller takes the particular form shown in

.‘l'len is, however, exposure to the look-direction signal through the error signal that is fed back to direct adap-
tation; the generalised sidelobe canceller is subject to signal cancellation.
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.: Figure C-1.
In terms of the difference signal vector X' and the signal d, the Wiener
o
weight vector for the generalized sidelobe canceller may be written as
o Wése = RilxyPor . (C-1)
o
N
}.:; where
’ ’ ’
:j X' A [z, 2, . xnnlT
Y Ryy A EX'X'T)
» =
Py, & ElX'] . (C-2)
A representative element z,-', 1 < ¢ < K-1, of the difference signal vector
. X' is obtained from the received signals according to
. '
N L =%-%, . (C-3)
"' (The remaining elements of X’ were derived in the same manner at an earlier
’_‘ point in time.) Each received signal is taken to consist of a signal component plus
-
e noise components. Because the array is assumed to consist of identical elements
B and to be perfectly steered, the signal components are identical across the array.
7
:33 Therefore
)
R
» '
L =52, = (e+n)-(s4ny) = n-n_, . (C4)
N %' *
2

.

It is evident from the lack of signal components in the difference signal vector

-
Al

that the factor R}y can bring no signal influence to the Wiener solution.

B

The output d of the fixed beamformer in the generalized sidelobe canceller is

r

-
i. -"
B

v
o
[N
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)3 given by
5 ¢ =3 4 L $(etm) = s+ L 3 (C-5)
o = =z = = s+m;) = s+ — n, .
@ i K K o ' K o
3
. The crosscorrelation may be calculated from X' and d as follows:
5 ,
K Py & E[dX']
? = Ele + & 3 m)X']
" iml]
: = Elx']+ E(L 3 mx)
;: K tm=] '
"‘ 1 K ,
= = El(% ¥ mX'] . (C-8)
,!: el
-3.-2 It is now seen that the second factor of Equation (C-1) is also free of signal
>
" influence and therefore that the Wiener solution for a hard-constraired ABF is
)
¥ uninfluenced by the desired signal.
3
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APPENDIX D

A COMPOSITE BEAMFORMER BASED UPON

WIDROW'S PILOT-SIGNAL ALGORITHM

The composite-beamformer discussions in the body of this report centered
upon the use of Frcst's algorithm for weight adaptation. Frost's algorithm is
designed to operate in a signal-aligned environment, i.e.,, the array must be
steered either mechanically or electrically so that signals from the look direction
are cophased across the array. Once the array has been properly steered, the
Frost algorithm provides excellent control over the response in the chosen look
direction. The Frost-based CBF is an appropriate choice when a single look

direction can be established with reasonable accuracy.

In many cases, however, it is not possible or desirable to specify a single
direction of arrival for desired signals. These situations arise, for example, when
communications must be maintained with multiple stations, when the location of
a station is imprecisely known, or when motion of the receiving platform makes it
difficult to maintain high pointing accuracies. An alternative to the single, hard-

constrained look direction is needed in these cases.

There are two requirements that must be met in order to realize a CBF that
provides multiple look directions. The first requirement is to eliminate signal

energy incident from the various look directions. It is difficult and expensive to

generate wideband nulls in multiple directions. On the other hand, it is relatively
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. simple to create multiple narrowband nulls by using a structure such as a nulling
:; tree. The second requirement is to adaptively eliminate jammer signals while
§ ‘ sustaining useful responses in the look directions. Widrow's pilot-signal
* algorithm provides a convenient method for nulling jammers while maintaining
: soft-constrained responses in multiple look directions. Taken together, the
fl:- nulling-tree preprocessor and the pilot-signal algorithm form the building blocks
\ for a CBF that can serve multiple, narrowband signals.
The balance of this appendix describes the pilot-signal CBF and draws some
comparisons with the basic pilot-signal beamformer. The first section discusses
3 the nulling-tree preprocessor and illustrates the use of the nulling tree to generate
: * multiple notches and broadened notches. The next section then explains the
j CBF structure, which essentially consists of a nulling-tree preprocessor plus a
.3 pilot-signal beamformer. The final section shows that, in contrast with the basic
pilot-signal ABF, the pilot-signal CBF is capable of generating an unbiased
; solution for the narrowband case.
: A. The Nulling Tree
The nulling tree was described by Davies [1] and is also termed the Davies
cascade or Davies null-steering network. As has been noted by Steinberg [2], the
K. nulling tree does not necessarily constitute the most efficient means of realizing
multiple nulls. The great virtue of the nulling tree lies in its ability to provide
: independent control over multiple nulls. In that sense the nulling tree is well
;
i
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matched to Widrow’s pilot-signal algorithm, which provides independent control

through the separate pilot signal established for each look direction.

The structure of the nulling tree is shown in Figure D-1. The tree consists
of a number of stages equal to the number of nulls to be generated. Each stage is
formed from a set of identical sections. The sections operate upon two outputs
from the preceding stage and perform a phase-shift-and-add process that nulls
signals arriving from a selected direciion. In particular, a null is generated in the
i} stage for signals arriving from an angle 8 by choosing the phase shift ¢; given

by

21rdsm0+

x x radians (D-1)

¢ =

where d is the interelement distance in the uniform linear array and X\ is the

wavelength at the frequency for which nulling is desired.

A computer program was written to design nulling trees and plot the
beampatterns resulting from the designs. Various test cases were examined to

determine the characteristics of the nulling-tree preprocessor.

Figure D-2 shows a series of beampattern pilots that result from adding
successive nulls at separate arrival angles. The initial null is established for
signals arriving from broadside; the second stage nulls signals from + 45°; and
the third stage is set for -30° arrivals. This preprocessor can accommodate an

environment in which there are multiple signals sources at well-defined look

directions.
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Another type of requirement is considered in Figure D-3. Here it is assumed
that only one emitter is of interest, but the look direction is imprecisely known.
An initial null is established in the estimated look direction, and successive stages
are used to broaden the null by creating additional spatial notches on each side

of the estimated direction.

B. Structure of the Pilot-Signal CBF

Figure D-4 is a block diagram of the pilot-signal CBF. A uniform linear
array of K elements provides the input signals to the CBF. All of the elements
are connected to t‘he nulling-tree preprocessor, which consists of M stages that
create M nulls in the various directions from which desired signals may arrive.
The K-M outputs from the nulling tree constitute a signal-free environment in
which adaptation can proceed without concern about cancellation effects. The
slaved beamformer is connected directly to the first K—M elements of the array

and is used to derive a useful output signal for the receivers.

The pilot-signal algorithm is used to provide a prespecified, soft-constrained
response in each potential look direction. A separate pilot signal is generated for
each look direction and, after appropriate phasing, is added to the ABF inputs.
The pilots are also filtered and summed to form a synthetic ‘‘desired” signal
against which the ABF output is compared. The difference between the summed

pilots and the ABF output is the error signal that is used to guide adaptation.
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Weight adaptation can be accomplished with a variety of different
algorithms. The Widrow-Hoff LMS algorithm [3] was initially proposed for use in
a digital implementation of the pilot-signal ABF. Applebaum [4] described an

analog implementation that makes use of correlation loops.

It is interesting to note that very few changes are needed to transform the
basic pilot-signal ABF into a pilot-signal CBF. The slaved beamformer is already
present in the pilot-signal scheme and therefore need not be introduced. The
only new components are the null-forming preprocessor and the extra antenna

elements entailed by the nulling process.

C. Bias Removal by the CBF

Soon after the development of the pilot-signal algorithm, it was recognized
that the solution it generates in the presence of signal is biased from the Wiener
solution. Griffiths [5] investigated the source of bias in some detail and succeeded
both in explaining the phenomenon and devising an alternative beamformer that
avoided the problem. Griffiths’ beamformer, however, is subject to signal
cancellation. The paragraphs that follow will demonstrate that, in addition to
solving the signal-cancellation problem, the CBF solves the bias problem, thus

eliminating both disadvantages normally encountered with pilot-signal

beamformers.
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Griffiths investigated the bias issue in the context of a pilot-signal ABF with
a single look direction and, consequently, a single pilot signal. The same
approach will be followed here because the use of multiple pilot signals
complicates matters without contributing anything of substance.

The pilot signal in Griffiths’ model is taken to be some multiple 8 of the

estimated desired signal §(k), i.e.,

d(k) = Bi(k) . (D-2)

After phase shifting to allow for propagation effects, the pilot is added to the
beamformer inputs. This injected signal vector is identified as A5(k), where S(k)

is the estimated desired-signal vector across the inputs.

Weight updating is accomplished using the LMS algorithm:

Wik+1) = W(k)+ 2p(Bi(k) - [XT(k) + BST(k)] W(K)} {X(k) + B5(K)}
(D-3)
where
X(k) is the input signal vector,

W(k) is the beamformer weight vector, and

B is the adaptation parameter.

Griffiths showed that the limiting value of the expectation of the weight

vector is given by
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where

Ryex & E[X(K)XT(k)]
Res A E[S(k)ST(K))
B, A E[§(k)S(k)]

The equation for My, differs from the Wiener solution
W* = RJ' P, (D-5)

even if the pilot happens to be a perfect replica of the desired signal. This effect
occurs because the actual incoming signal contributes to the beamformer inputs,
and the combination of actual signal and pilot signal enter the adaptation
process. Bias in the pilot-signal solution is undesirable and can only be
eliminated in the original design by limiting adaptation to periods when the
desired signal is known to be absent. This is, under most circumstances, an

unworkable operational constraint.

In the pilot-signal CBF, adaptation is always conducted in the absence of
signal due to the action of the preprocessor. It might therefore be expected that

superior performance can be obtained. This is, in fact, the case.

Some further examination of the signal environment is needed to
demonstrate the superiority of the CBF with regard to bias. The signal vector

X(k) that appears at the beamformer weights is taken to consist of two

.........................

...............
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components:
X(k) = S(k)+ N(k) . (D-6)

The vector S(k) is comprised solely of desired-signal components arriving via the
direct path. The noise vector N(k) is the sum of all interfering signals (including
desired-signal multipath) and element noise. The autocorrelation matrix for X(k)

can now be calculated:

e

E[X(k)XT (k)]

E{[S(k) + N(k)[ST(k) + NT(k))}

E(S(k)ST(k)] + E[S(INT(k)] + E[N(k)ST(K)] + E[N(k)NT(k)]
Rss + Rgy + Rys + Ry - (D-7)

Rxx

Several different sets of assumptions concerning the signal environment and

the CBF realization will now be considered:

Case 1: Assume that signal and noise processes are uncorrelated, i.e., that

multipath and repeater jamming are not present. For this environment
Ryx = Rgs+ Ryy . (D-8)

Further assume perfect implementation of the CBF. A perfect preprocessor
excises the desired signal without aflecting noise components and generates a

modified beamformer input given by

X'(k) = N(k) . (D-9)
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The autocorrelation matrix for X' (k) is

& Ryrx» = Ryy . (D-10)
‘ For a perfect choice of pilot-signal amplitude and statistics

3 p=1

§ Rss = Rss

P, =P, . (D-11)

& The limiting value M}, for Case 1 may now be written as

N Rey . .

h3 MW = ) + Rss P'

54

3 = [Rny + Rgs]™ P,

; =Rgk P, . (D-12)
‘ This last equation indicates that, unlike perfect realization of the basic pilot-
.3 signal ABF, perfect realization of the pilot-signal CBF yields the Wiener solution.
s.q

pd

i< Case 2: Repeat the assumptions of Case 1, except for the assumption of perfect
J preprocessing. Instead allow perfect removal of the desired signal, but assume
»

e incidental modification of the noise field. Under these conditions

.: My = |A Ryy AT + Rg|' P, (D-13)
‘.'5

e where the A matrix describes the preprocessor influence on the noise vector. The
et

' right-hand side of this equation is not necessarily equal to the Wiener solution.
g
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Under the set of assumptions discussed in Chapter 4 (i.e., narrowband
interference, sufficient degrees of freedom, high jammer-to-noise ratios element
spacing less than half-wave), the right-hand side does reduce to the Wiener

solution.

Case 3: Repeat the assumptions of Case 1, except for the assumption that the

signal and noise processes are uncorrelated. When correlation is allowed
Ryxy = Rgs + Rgy + RNS + Ryw (D-14)

Preprocessing now produces a much simpler environment within the adaptive

beamformer:

X' (k)

Ry x» = Ryy

N(k)

The limiting value of the weight mean is
My = [Ryy + Rss|' P, . (D-16)

In other words, the pilot-signal CBF treats the correlated signal as though it were

uncorrelated. This is not the Wiener solution, but it is the desired solution in

tkis important case.
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APPENDIX E

SIMULATION METHODS

Computer simulations of the Frost ABF and the Frost-based CBF were used
to illustrate signal-cancellation effects and to demonstrate the performance
contrasts between the two beamformers. This appendix outlines the simulation

methods that were employed.

A. Simulation Facility

The adaptive-antenna simulations for this research were performed on an HP
1000F minicomputer facility at Stanford University. The simulation software
was, for the most part, an existing Fortran package that was written by a team
of students’ during 1979-1980 under the joint sponsorship of the U. S. Air
Force’s Rome Air Development Center and the Naval Air Development Center.
The software package is organized as a set of programs that run under the
control of a driver program and exchange data through disk files. This
arrangement allows multiple simulation functions to be performed in parallel
(albeit on a time-shared basis) and facilitates research by allowing time-
consuming adaptation experiments to proceed in the background while
experiment preparation and data analysis are being performed by the user. The

software package is capable of simulating several different beamformer types and

’Prheipd contributors were R. Gooch, W. Maaning, F. McCarthy, W. Newmaa, aad P. Titchener.
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is sufficiently flexible to support most of the basic investigations that might be

required for a specified adaptive antenna and signal/jammer scenario.

B. Simulation of an Adaptive Antenna

The program flow for adaptive antenna simulation is shown in Figure E-1.
The initial step in preparing a simulation experiment is to thoroughly specify the
problem that is to be considered. The driver program organizes this process by

prompting for the inputs that are needed to specify the following:

A. Antenna configuration
1. Number of elements .
2. Location of each element
B. Beamformer structure
1. Number of taps per beamformer filter
2. Adaptive algorithm
3. Constraints (if applicable)

4. Initial weight values

C. Signal/jammer scenario

1. Number of signals/jammers
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Antenna Configuration
Beamformer Structure
SPECIFY + Signal/Jammer Scenario
PROBLEM Adaptation Parameters
Signal Monitoring
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Figure E-1. Flowchart for Adaptive Antenna Simulation.
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2. Signal/jammer arrival angle
3. Signal/jammer power
4. Signal/jammer center frequency and bandwidth

D. Adaptation parameters
1. Number of adaptation cycles

2. Adaptation constant

E. Signal (e.g. input, master output, slave output) to be stored for later

analysis.

All of these data are organized into disk files and thus made available for use by

various programs during the simulation or for reuse in subsequent runs.

The first step in the actual simulation is generation of the initial samples of
the input signals. This can be accomplished by a direct computation for
sinusoidal signals since amplitude is known from the power specification and the
phase at any tap is known from the antenna/beamformer specifications, the
signal frequency, and the initial (or prior-sample) phase. The process is more
difficult for wideband signals. These signals are derived by first generating a
white-noise sequence and then digitally bandpass filtering to obtain the desired
center frequency and bandwidth. In general, the sample values derived in this

fashion will not correspond exactly to the sample values needed at the antenna

elements since fractional-sample-interval delays are often encountered. A sinc
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interpolation is used to correct for this effect and provide accurate input samples
in the wideband case. The aggregate signal sample at each tap is just the sum of
the various signal and jammer samples derived for the tap. Separate signal

vectors are maintained for master and slave beamformers.

Once the signal vectors have been obtained for some sample instant, it is
straightforward to calculate the output signal or signals by forming the inner
product of a signal vector with the current weight vector. In the case of the

composite beamformer, both the master beamformer output and the slaved

5 beamformer output are required.

:3::': Weight updating is accomplished based upon the current signal vector and

the current adaptive array output. The weight recursion for the Frost ABF was

given in Eq. (2-17).
After the new weight vector has been obtained, the next adaptation cycle
can begin. A check is made at this point to determine whether the prespecified
number of cycles has been completed. If so, the adaptation routine halts. If not,

&) the process of computing input samples, outputs, and new weight values

continues.

As the simulation progresses, data of interest are saved by transcribing to
disk files. The use of disk files allows large amounts of data to be saved and thus
supports lengthy adaptation experiments involving tens of thousands of
adaptation cycles. Additionally, the disk files provide convenient interfaces

between the simulation program and various data analysis programs.
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C. Plotting of Antenna Responses

Two types of plots are typically used to characterize the response of an
adaptive antenna with some specified set of beamformer weights. One plot shows
the response to a unit-power test signal of specified frequency as the test-signal
angle of arrival is varied through, say, 360°. This plot is usually termed a
“beampattern” and is useful in determining the relative response of the system to
jammers and desired signals. The second plot shows the response to a unit-power
test signal from a specified direction as the test-signal frequency is varied over
some range, generally from zero to half the sampling frequency. This plot is a
frequency-response characterization for the selected direction and is useful in
checking the effectiveness of jammer nulling and confirming the maintenance of
look-direction constraints. Both plot types are used most frequently to study
antenna response after the beamformer weights have converged (in the mean) to
the optimal solution for the environment under consideration. The plots may,
however, be plotted for any specified set of weights. A series of plots may be
generated to study, for example, the evolution of the antenna response as

adaptation occurs or the dynamics of the antenna response after convergence.

A flowchart of the procedure for generating and plotting antenna responses
is given in Figure E-2. The response plots are specified from the driver program,
which then starts the appropriate program for either a beampattern plot or a
frequency-response plot. Either program must first read the driver-specified

weight file and plot-parameter files from disk. The response for a given arrival
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START

SPECIFY
PATTERN
PLOT

READ WEIGHTS
‘‘‘‘‘ > & PARAMETERS

COMPUTE
RESPONSE

PLOT
RESPONSE

END

Figure E-2. Flowchart for Generation
and Plotting of Antenna Responses.
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“3 direction and frequency is then found by forming the phasor sum of the weighted
r

-: tap voltages and computing the beamformer output power from the amplitude of
:\ the sum. Repeated computations of this type give the response at enough
\ directions or frequencies to accurately characterize the antenna response. The
response is then plotted for study. A polar plot with a logarithmic (dB) radial
scale is usually preferred for beampattern plots, but a semilogarithmic cartesian
’\ presentation sometimes serves well. A cartesian plot is used for the frequency-
, response data, with frequency as the abscissa and power (in dB) as the ordinate.
1 D. Plotting of Input/Output Signals

= Plots of input and output signals and their spectra are important in the )
-

:’ study of adaptive antenna performance. These plots are especially valuable in
".Zj investigations of signal cancellation. Cancellation effects that are difficult to
\.'4 . recognize in beampattern or frequency-response plots can be easily detected by
:33 comparing input and output waveforms or spectra.

%5 Input and output data are gathered during the course of simulation
:.';: experiments and written to disk files for later analysis and display. A number of
‘ different signals (e.g. the desired signal, jammer signals, master beamformer
: ' output, slaved beamformer output) may be collected to thoroughly characterize
beamformer beh#ﬁor during various simulations. Plots of these data allow
."-.'3 comparisons to be drawn between different beamformers, different operating
'

5‘3 conditions, etc.
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Figure E-3 diagrams the event flow for production of input/output plots. If

- L g 2%

s

spectral plots are elected, a DFT routine is entered to generate power spectra for
E the selected signals. The DFT routine allows selection of transform size and
supports the computation of an average power spectrum over some specified
range of data samples. The power spectra are written to disk upon completion of
M this computation. The plot program allows several signals or spectra to be
presented simultaneously for comparison. Waveform or spectral data are read
from specified disk files and plotted on separate axes with a common scale for

. easy comparison.
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START

SPECTRA
REQUIRED
?

NO

YES

N\ COMPUTE
77T 7™  SPECTRA "“"'"@

@ &

\ PLOT
—— e WAVEFORMS/
SPECTRA

eYole

END

Figure E-3. Flowchart for Generating and
- Plotting Input/Qutput Signals.

NYLN W T e N T et ta T e e ety e




L -

R TN TR TN
L it ot o




